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Abstract Understanding how delayed information
impacts queueing systems is an important area of
research. However, much of the current literature
neglects one important feature of many queueing sys-
tems, namely non-stationary arrivals. Non-stationary
arrivals model the fact that customers tend to access
services during certain times of the day and not at
a constant rate. In this paper, we analyze two two-
dimensional deterministic fluid models that incorpo-
rate customer choice behavior based on delayed queue
length information with time-varying arrivals. In the
first model, customers receive queue length informa-
tion that is delayed by a constant �. In the second
model, customers receive information about the queue
length through a moving average of the queue length
where the moving average window is �. We analyze
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the impact of a time-varying arrival rate and show using
asymptotic analysis that the time-varying arrival rate
does not impact the critical delay unless the frequency
of the time-varying arrival rate is twice that of the criti-
cal delay.When the frequency of the arrival rate is twice
that of the critical delay, then the stability is enlarged
by a wedge that is determined by the model param-
eters. As a result, this problem allows us to combine
the theory of nonlinear dynamics, parametric excita-
tion, delays, and time-varying queues together to pro-
vide insight into the impact of information on queueing
systems.

Keywords Queues · Delay differential equation ·
Time-varying rates · Asymptotics · Two-variable
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1 Introduction

Understanding the impact of providing delayed infor-
mation to customers in queueing systems is a very
important problem in the queueing and engineering lit-
erature. Many companies where customers are forced
to wait in line often choose to provide their customers
with waiting time or queue length information. Conse-
quently, the information that is provided can affect a
customer’s choice of using the service and joining the
queue. One common example of this communication
between the service and customer is delay announce-
ments. Delay announcements commonly inform cus-
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tomers about the average waiting time to start service.
These announcements are not only important because
they give the customer information about their wait,
but also the announcements have the possibility of
influencing the possibility that a customer will return
to use the service again or remain in. As a conse-
quence, understanding the impact of providing queue
length information to customers on customer choices
and system operations, as well as the development of
methods to support such announcements, has attracted
the attention of the queueing systems community
recently.

Much of the research on providing queue length or
waiting time information to customers focuses on the
impact of delay announcements in call centers. There
is a vast literature on this subject, but our focus is
quite different. Work by Ibrahim and Whitt [15–18]
develops new real-time estimators for estimatingdelays
in various queueing systems. The work of Armony
and Maglaras [3], Guo and Zipkin [10], Hassin [12],
Armony et al. [4], Guo and Zipkin [11], Jouini et al.
[21,22], Allon and Bassamboo [1], Allon et al. [2],
Ibrahim et al. [19], Whitt [37] and references therein
analyzes the impact of delay announcements on the
queueing process and the abandonment process of the
system. Lastly, the work of Hui and Tse [13], Hul et
al. [14], Pruyn and Smidts [32], Munichor and Rafaeli
[26], Sarel and Marmorstein [34], Taylor [35] explores
the behavioral aspect of customer waiting and how
delays affect customer decisions. This paper is con-
cerned about the impact of time-varying arrival rates
and delayed information on the queue length process.
Thus, it is mostly related to the work by Armony
and Maglaras [3], Guo and Zipkin [10], Hassin [12],
Armony et al. [4], Guo and Zipkin [11], Jouini et al.
[21,22], Allon and Bassamboo [1], Allon et al. [2],
Ibrahim et al. [19], Whitt [37], Armony et al. [5], Dong
et al. [7].

More recently, there is also research that con-
siders how information can impact the dynamics of
queueing systems. Work by Jennings and Pender [20]
compares ticket queues with standard queues. In a
ticket queue, the manager of the queue is unaware
of when a customer abandons and is only notified
of the abandonment when the customer would have
entered service. This artificially inflates the queue
length process, and Jennings and Pender [20] deter-
mines how much the queue length is inflated because
of this loss of information. However, this work does

not consider the aspect of choice and delays in
publishing the information to customers, which is
the case in many healthcare and transportation set-
tings.

This paper analyzes two deterministic queueing
models, which describe the dynamics of customer
choice and delayed queue length information. In the
first model, the customer receives information about
the queue length which is delayed by a parameter �.
In the second model, we use a moving average of the
queue length over the time interval � to represent the
queue length information given to the customer. The
models that we analyze are identical to the models that
were analyzed in Pender et al. [31]; however, in this
paper we add a time-varying arrival rate, which is a
significant generalization. This is because queues with
time varying arrival rates are notoriously difficult to
analyze since many of the standard techniques do not
apply.

However, in this paper, we apply asymptotic anal-
ysis techniques like matched asymptotic expansions
and the two-variable expansion method to analyze our
new time-varyingqueueing systemswith delayed infor-
mation. We show in both models that when the time-
varying arrival is sinusoidal and the sinusoidal part is
small, then the time-varying part of the arrival rate does
not affect the stability of the queueing dynamics unless
the frequency of the arrival rate is twice that of the
oscillation frequency.

The main results in this work represent a novel
contribution to the literature in queueing theory and
dynamical systems because many real-world queue-
ing systems have time-varying rates. Moreover, it is
important to understand when the time-varying arrival
rate will have an affect on the stability dynamics of
the system. We will show that when the time-varying
amplitude is small relative to the base arrival rate and
the frequency of the arrival rate is not twice that of the
critical delay, then the stability dynamics are roughly
identical to the non-time-varying case. This is a sig-
nificant result since the amplitude of the time-varying
arrival rate in many queueing systems are on the order
of 20% of the average arrival rate and are not large
relative to the average arrival rate. Furthermore, we
precisely show in the small amplitude setting when the
time variation has an impact on the critical delay and
when it does not. This will give queueing managers
more insight into how to operate their queues when in
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the presence of delayed information and time-varying
arrival rates.

1.1 Main contributions of paper

The contributions of this work can be summarized as
follows.

• We analyze two two-dimensional fluidmodels with
time-varying arrival rates that incorporate customer
choice based on delayed queue length information.
In the first model, the information provided to the
customer is the queue length delayed by a constant
�, and in the second model, the information pro-
vided to the customer is a moving average of the
queue length over a time window of size �. We
show that the impact of the time-varying arrival
does not shift the value of the critical delay unless
the frequency of the arrival rate is twice that of the
critical frequency.

• We show in both models using the method of mul-
tiple time scales that the critical delay, which deter-
mines the stability of the delay differential equa-
tions, can be shifted by the incorporation of time-
varying arrival rates.We also determine the size and
impact of this shift.

1.2 Organization of paper

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview of the infi-
nite server queue with time-varying arrival rates and
describes the constant delay fluidmodel. Using asymp-
totic expansions, we derive the critical delay thresh-
old under which the queues are balanced if the delay
is below the threshold and the queues are asynchro-
nized if the delay is above the threshold. We also show
that the increased or decreased stability because of
the time-varying arrival rates depends on the sign of
the amplitude. Section 3 describes a constant mov-
ing average delay fluid model. Using similar asymp-
totic expansions, we derive the critical delay thresh-
old under which the queues are balanced if the delay
is below the threshold and the queues are asynchro-
nized if the delay is above the threshold in the case of
time-varying arrival rates. Finally, in Sect. 4, we con-
clude with directions for future research related to this
work.

2 Constant delay fluid model

In this section, we present a fluid model with customer
choice based on the queue length with a constant delay.
Thus, we begin with two infinite server queues operat-
ing in parallel, where customers choose which queue to
join by taking the size of the queue length into account.
However, we add the twist that the queue length infor-
mation that is reported to the customer is delayed by a
constant �. Therefore, the queue length that the cus-
tomer receives is actually the queue length� time units
in the past. Our choice model is identical to that of a
Multinomial Logit Model (MNL) Ben-Akiva and Bier-
laire [6], Train [36] where the utility for being served
in the i th queue with delayed queue length Qi (t − �)

is ui (Qi (t − �)) = Qi (t − �). Thus, our determin-
istic queueing model with customer choice, delayed
information, and time-varying arrival rates can be rep-
resented by the two-dimensional system of delay dif-
ferential equations
•
q1(t) = λ(t)

· exp(−q1(t − �))

exp(−q1(t − �)) + exp(−q2(t − �))
− μq1(t)

(2.1)
•
q2(t) = λ(t)

· exp(−q2(t − �))

exp(−q1(t − �)) + exp(−q2(t − �))
− μq2(t)

(2.2)

where we assume that q1(t) and q2(t) start with dif-
ferent initial functions ϕ1(t) and ϕ2(t) on the interval
[−�, 0], λ(t) is the total arrival rate to both queues,
and μ is the service rate of each queue.

With respect to Eqs. (2.1)–(2.2), the arrival rate is
given by

Arrival Rate to i th Station

= λ(t) · exp(−qi (t − �))

exp(−q1(t − �)) + exp(−q2(t − �))

(2.3)

is state dependent and delayed. One reason that it has
this exponential form given by a MNL model is that
as more customers that are present in a queue, the less
likely a customer will be willing to join that line. If the
two queues are equal, then a customer is ambivalent
toward joining a line. On the other hand, the departure
rate is given by

Departure Rate from i th Station = μqi (t) (2.4)
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and describes the rate at which customers are leaving
the queue. Since we are modeling an infinite server
queue, it follows that the more customers that are
present in that queue, the larger the rate of departure.

Remark When the two delay differential equations are
startedwith the same initial functions, they are identical
for all time because of the symmetry of the problem.
Therefore, we will start the system with non-identical
initial conditions, so the problem is no longer trivial
and the dynamics are not identical.

In the constant delay model, it is critical to under-
stand the case when the arrival rate is constant and does
not depend on time. In Pender et al. [31], the authors
show that the critical delay can be determined from the
model parameters and the following theorem is from
Pender et al. [31].

Proposition 2.1 For the constant delay choice model,
the critical delay parameter is given by the following
expression

�cr(λ, μ) = 2 arccos(−2μ/λ)
√

λ2 − 4μ2
. (2.5)

Proof See Pender et al. [31]. ��

However, the model of Pender et al. [31] neglects to
consider the impact of time-varying arrival rates. Time-
varying arrival rates are important to incorporate into
one’s model of queues since real customer behavior
is dynamic and is not constant over time. To this end,
we will exploit asymptotic analysis and perturbation
methods to obtain some insight into the impact of time-
varying arrival rates.

2.1 Understanding the Mt/M/∞ queue

Before we analyze the queueing model with customer
choice, it is important to understand the dynamics of
the infinite server queuewith a time-varying arrival rate
since it will be essential to our future analysis.We know
from the work of Eick et al. [8,9] that the infinite server
queue or the Mt /G/∞ queue has a Poisson distribution
when initialized at zero or with a Poisson distribution
with mean rate q∞(t) where

q∞(t) = E[Q∞(t)] (2.6)

=
∫ t

−∞
G(t − u)λ(u)du (2.7)

= E

[∫ t

t−S
λ(u)du

]
(2.8)

= E[λ(t − Se)] · E[S] (2.9)

where S represents a service time with distribution G,
G = 1−G(t) = P(S > t), and Se is a random variable
with distribution that follows the stationary excess of
residual-lifetime cdf Ge, defined by

Ge(t) ≡ P(Se < t) = 1

E[S]
∫ t

0
G(u)du, t ≥ 0.

(2.10)

The exact analysis of the infinite server queue is
often useful since it represents the dynamics of the
queueing process if there were an unlimited amount
of resources to satisfy the demand process. Moreover,
as observed in Pender [28], when the service time dis-
tribution is exponential, the mean of the queue length
process q∞(t) is the solution to the following ordinary
linear differential equation

•
q∞(t) = λ(t) − μ · q∞(t). (2.11)

Proposition 2.2 The solution to the mean of the
Mt/Mt/∞ queue with initial value q0 is given by

E[Q∞(t)] = q∞(t) (2.12)

= q0 · exp
{
−

∫ t

0
μ(s)ds

}
(2.13)

+
(
exp

{
−

∫ t

0
μ(s)ds

}

·
(∫ t

0
λ(s) exp

{∫ s

0
μ(r)dr

}
ds

))
. (2.14)

Proof We can exploit the fact that the mean of the
Markovian time-varying infinite server queue solves a
linear ordinary differential equation. Therefore, we can
use standard ode theory to find the mean of the infinite
server queue. For more details, see for example, Pender
[28]. ��

Corollary 2.3 In the special case where q0 = 0, μ is
constant, and λ(t) = λ+λ ·α sin(γ t), the mean queue
has the following representation
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E[Q∞(t)] = λ

μ
· (1 − exp(−μt)) + λ · α

μ2 + γ 2

· [(μ · sin(γ t) − γ · cos(γ t))
+ exp(−μt) · γ

]
.

Moreover, when t is very large, then we have that

E[Q∞(t)] ≈ λ

μ
+ λ · α

μ2 + γ 2

· [μ · sin(γ t) − γ · cos(γ t)] .

2.2 Constant delay model with time-varying arrivals

Although the case where the constant delay queue-
ing model has a constant arrival rate λ, the exten-
sion to more complicated arrival functions such as
λ(t) = λ + λ · α sin(γ t) is quite difficult to analyze.
However, we can analyze the system when the time-
varying arrival rate is close to the constant rate case
using perturbation theory. Thus, we assume that the
queue length equations for the constant delay model
satisfy the following delay differential equations

•
q1(t) = (λ + λ · α · ε sin(γ t))

· exp(−q1(t − �))

exp(−q1(t − �)) + exp(−q2(t − �))
− μq1(t)

(2.15)

•
q2(t) = (λ + λ · α · ε sin(γ t))

· exp(−q2(t − �))

exp(−q1(t − �)) + exp(−q2(t − �))
− μq2(t)

(2.16)

where we assume that q1(t) and q2(t) start with dif-
ferent initial functions ϕ1(t) and ϕ2(t) on the interval
[−�, 0] and we assume that 0 ≤ α ≤ 1 and ε 	 1.

In order to begin our analysis of the delay differen-
tial equations, we need to understand the case where
ε = 0. Fortunately, this analysis has been carried out
in Pender et al. [31] and we give a brief outline of the
analysis for the reader’s convenience. The first step to
understanding the case when ε = 0 to compute the
equilibrium in this case.

In our case, the delay differential equations given
in Eqs. (2.15)–(2.16) are symmetric. Moreover, in the
case where the delay � = 0, the two equations con-
verge to the same point since in equilibrium each queue
will receive exactly one half of the arrivals and the two
service rates are identical. This is also true in the case

where the arrival process contains delays in the queue
length since in equilibrium, the delayed queue length is
equal to the non-delayed queue length. Thus, we have
in equilibrium that

q1(t) = q2(t) = q∞(t)

2
as t → ∞. (2.17)

and

q1(t − �) = q2(t − �) = q∞(t − �)

2
as t → ∞.

(2.18)

Now that we know the equilibrium for Eqs. (2.1)–
(2.2), we need to understand the stability of the delay
differential equations around the equilibrium. The first
step in doing this is to linearize the nonlinear delay dif-
ferential equations around the equilibrium point. This
can be achieved by setting the queue lengths to

q1(t) = q∞(t)

2
+ u(t) (2.19)

q2(t) = q∞(t)

2
− u(t) (2.20)

where u(t) is a perturbation function about the equilib-
rium point q∞(t)

2 . By substituting Eqs. (2.19)–(2.20)
into Eqs. (2.1)–(2.2), respectively, and linearizing
around the point u(t) = 0, we have that the pertur-
bation function solves the following delay differential
equation

•
u(t) = −λ

2
· u(t − �) − μ · u(t). (2.21)

Therefore, it only remains for us to analyze Eq.
(2.21) to understand the stability of the constant delay
queueing system.

Now, by substituting u(t) = exp(iωt) in Eq. (2.21)
and applying the techniques from Pender et al. [31], we
obtain the following values for ωcr and �cr:

ωcr = 1

2

√
λ2 − 4μ2 (2.22)

�cr = 2 arccos(−2μ/λ)
√

λ2 − 4μ2
. (2.23)

Note that Eq. (2.21) possesses a special solution for
� = �cr that is given by:

u(t) = A cosωcrt + B sinωcrt (2.24)

where A and B are arbitrary constants.
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2.3 Asymptotic expansions for constant delay model

Now that we understand the case where ε = 0, it
remains for us to understand the general case. One
important observation to make is that in the previous
subsection, we did not use the arrival rate in any way.
Therefore, the same analysis can be repeated with the
time-varying arrival rate with no changes. Following
the same steps as in the case ε = 0, we arrive at the
case where we need to analyze the following delay dif-
ferential equation

•
z(t) = −λ

2
(1 + α · ε · sin γ t) · z(t − �) − μz(t),

ε 	 1. (2.25)

However, since the arrival rate is not constant this time,
we do not have a simple way to find the stability of
the equation. Therefore, we will exploit the fact that
the time-varying arrival rate is near the constant arrival
rate and use the two-variable expansion method or the
method ofmultiple time scales developed byKevorkian
and Cole [23].

Theorem 2.4 The only resonant frequency γ of the
time-varying arrival rate function for the first-order
two-variable expansion is γ = 2ωcr. For this value
of γ , the change in stability occurs at the value �mod

where

�mod = �cr − ε

√
α2

λ2 − 4μ2 . (2.26)

Proof We expand time into two variables ξ and η that
represent regular and slow time, respectively, i.e.,

ξ = t (regular time) and η = εt (slow time).

(2.27)

Therefore, z(t) now becomes z(ξ, η), and

•
z(t) = dz

dt
= ∂z

∂ξ

dξ

dt
+ ∂z

∂η

dη

dt
= ∂z

∂ξ
+ ε

∂z

∂η
(2.28)

Moreover, we have that

z(t − �) = z(ξ − �, η − ε�) (2.29)

In discussing the dynamics of 2.25, we will detune the
delay � off of its critical value:

� = �cr + ε�1 + O(ε2) (2.30)

Substituting Eq. (2.30) into Eq. (2.29) and expanding
term by term, we get

z(t − �) = z̄ − ε�1
∂ z̄

∂ξ
− ε�cr

∂ z̄

∂η
+ O(ε2) (2.31)

where

z̄ = z(ξ − �cr, η).

Equation 2.25 becomes, neglecting terms of O(ε2),

∂z

∂ξ
+ ε

∂z

∂η
= −μz − λ

2
(1 + α · ε · sin γ t)

×
(
z̄ − ε�1

∂ z̄

∂ξ
− ε�cr

∂ z̄

∂η

)
(2.32)

Now, we expand z in a power series in ε:

z = z0 + εz1 + O(ε2) (2.33)

Substituting (2.33) into (2.32), collecting terms, and
equating similar powers of ε, we get

∂z0
∂ξ

+ μz0 + λ

2
z̄0 = 0 (2.34)

∂z1
∂ξ

+ μz1 + λ

2
z̄1

= −∂z0
∂η

+ λ

2

(
�1

∂ z̄0
∂ξ

+ �cr
∂ z̄0
∂η

− αz̄0 sin γ ξ

)

(2.35)

Equation 2.34 has the solution given in Eq. (2.24):

z0 = A(η) cosωcrξ + B(η) sinωcrξ. (2.36)

The functions A(η) and B(η) give the slow flow of
the system. We find differential equations on A(η) and
B(η) by substituting Eqs. (2.36) into (2.35) and elimi-
nating the resonant terms.

The next step is to substitute (2.36) into (2.35). The
quantity z̄0 in (2.35) may be conveniently computed
from the following expression, obtained from (2.34):

z̄0 = 2

λ
·
(

−μz0 − ∂z0
∂ξ

)

= 2

λ
· [−(μA + ωcrB) cosωcrξ

+ (ωcrA − μB) sinωcrξ ] (2.37)
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Therefore, we have the following expressions for the
terms in Eq. (2.35)

∂z0
∂η

= A′ · cos(ωcrξ) + B ′ · sin(ωcrξ) (2.38)

∂ z̄0
∂ξ

= 2 · ωcr

λ
[(Aωcr − μB) · cos(ωcrξ)

+ (μA + Bωcr) · sin(ωcrξ)] (2.39)
∂ z̄0
∂η

= −2

λ

[
(μA′ + B ′ωcr) · cos(ωcrξ)

+ (μB ′ − A′ωcr) · sin(ωcrξ)
]

(2.40)

αz̄0 sin γ ξ = −α · [(μA + Bωcr) · cos(ωcrξ)

+ (μB − Aωcr) · sin(ωcrξ)] · sin(γ ξ)

= α

2
(Aωcr − Bμ)

[
cos((γ − ωcr)ξ)

− cos((γ + ωcr)ξ)
]

− α

2
(Aμ + Bωcr)

[
sin((γ − ωcr)ξ)

+ sin((γ + ωcr)ξ)
]

(2.41)

Thus, after substituting Eqs. (2.36) into (2.35) and
applying angle-sum identities, the only terms involving
γ are of the form

cos((γ ± ωcr)ξ), sin((γ ± ωcr)ξ) (2.42)

Notice that γ = 2ωcr is the only resonant frequency for
the arrival function. For any other value of γ , the terms
involving γ at O(ε) are non-resonant, and the first-
order two-variable expansion method does not capture
any effect from the time-varying arrival function. This
2 to 1 resonance is a similar phenomenon to that aris-
ing fromordinary differential equations involving para-
metric excitation, see for example Ng and Rand [27],
Ruelas et al. [33]. Therefore, we set γ = 2ωcr, and Eq.
(2.35) becomes

∂z1
∂ξ

+ μz1 + λ

2
z̄1

= [
c1A

′(η) + c2B
′(η) + c3A(η) + c4B(η)

]

× cos(ωcrξ)

+ [
c5A

′(η) + c6B
′(η) + c7A(η) + c8B(η)

]

× sin(ωcrξ)

+ non-resonant terms (2.43)

where

c1 = 1 + μ�cr, c2 = �crωcr,

c3 = αωcr

2
− �1ω

2
cr, c4 = −αμ

2
+ �1μωcr

(2.44)

c5 = −�crωcr, c6 = 1 + μ�cr,

c7 = −αμ

2
− �1μωcr, c8 = −αωcr

2
+ �1ω

2
cr

(2.45)

Elimination of secular terms gives the slow flow:

dA

dη
= K1A(η) + K2B(η) (2.46)

dB

dη
= K3A(η) + K4B(η) (2.47)

where

K1 = −ωcr(2α�crμ+α−2�1ωcr)

2
(
�2
crω

2
cr+(�crμ + 1)2

) (2.48)

K2 =
α

(
�crμ

2−�crω
2
cr+μ

)
−2�1ωcr

(
�crμ

2+�crω
2
cr + μ

)

2
(
�2
crω

2
cr+(�crμ+1)2

)

(2.49)

K3 =
α

(
�crμ

2 − �crω
2
cr+μ

)
+2�1ωcr

(
�crμ

2+�crω
2
cr+μ

)

2
(
�2
crω

2
cr + (�crμ + 1)2

)

(2.50)

K4 = ωcr(2α�crμ+α+2�1ωcr)

2
(
�2
crω

2
cr+(�crμ+1)2

) (2.51)

The equilibrium point A(η) = B(η) = 0 of the slow
flow corresponds to a periodic solution for z0, and the
stability of the equilibrium corresponds to the stability
of that periodic solution. The stability is determined by
the eigenvalues of the matrix

K =
[
K1 K2

K3 K4

]
(2.52)

If both eigenvalues have negative real part, the equilib-
rium is stable. Since the eigenvalues are cumbersome to
work with directly, we use the Routh–Hurwitz stability
criterion:

Denote the characteristic polynomial of K by

det(K − r I ) = a0 + a1r + a2r
2 = 0 (2.53)

Then both eigenvalues have negative real part if and
only if all the coefficients satisfy ai > 0. From Eqs.
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(2.48)–(2.51) and 2.53, and using the expression for
ωcr from Eq. (2.22), we have

a0 =
(
μ2 + ω2

cr

) (
4�2

1ω
2
cr − α2

)

4
(
�2

crω
2
cr + (�crμ + 1)2

)

= λ2
(
�2

1

(
λ2 − 4μ2

) − α2
)

4
(
�2

crλ
2 + 8�crμ + 4

) (2.54)

a1 = − 2�1ω
2
cr

�2
crω

2
cr + (�crμ + 1)2

= − 2�1
(
λ2 − 4μ2

)

�2
crλ

2 + 8�crμ + 4
(2.55)

a2 = 1 (2.56)

Recall that ωcr is real and positive only if λ > 2μ.
So, using this restriction, we find that all of the ai are
positive if and only if

�1 < − |α|
2ωcr

= −
√

α2

λ2 − 4μ2 . (2.57)

Note that we can recover the case with no resonant
forcing by setting the forcing amplitudeα = 0.With no
forcing, the periodic solution for z0 becomes unstable
at � = �cr, but with resonant forcing, the change of
stability occurs when

�mod = �cr − ε

√
α2

λ2 − 4μ2 . (2.58)

��

2.4 Numerics for constant delay queueing model

In this section, we numerically integrate the delay two
examples of delay differential equations with constant
delays and compare the asymptotic results for deter-
mining the Hopf bifurcation that occurs. On the left of
Fig. 1,we numerically integrate the twoqueues and plot
the queue length as a function of time. In this example
our lag in information is given by � = 1.947. We see
that the two equations eventually converge to the same
limit as time is increased toward infinity. This implies
that the system is stable and no oscillations or asyn-
chronous dynamics will occur due to instability in this
case. On the right of Fig. 1 is a zoomed-in version of the
figure on the left. It is clear that the two delay equations

Fig. 1 �cr = 2.0577, �mod = 1.9682. λ = 3, μ = 1, α = 1,
ε = .2, γ = √

5, � = 1.947, ϕ1([−�, 0]) = 1,ϕ2([−�, 0]) = 2

Fig. 2 �cr = 2.0577, �mod = 1.9682. λ = 3, μ = 1, α = 1,
ε = .2, γ = √

5, � = 1.977, ϕ1([−�, 0]) = 1,ϕ2([−�, 0]) = 2

are converging toward one another and this system is
stable. However, in Fig. 2 we use the same parame-
ters, but we make the lag in information � = 1.977.
This is below the critical delay in the constant case and
above themodified critical delaywhen the time-varying
arrival rate is taken into account. On the right of Fig.
2, we display a zoomed-in version of the figure on the
left.We see that in this case the two queues oscillate and
asynchronous behavior is observed. Thus, the asymp-
totic analysis performed works well at predicting the
change in stability.

123



Delayed information and time-varying arrival rates 2419

Fig. 3 �cr = .3617, �mod = .3413. λ = 10, μ = 1, α = 1,
ε = .2, γ = √

96, � = .33, ϕ1([−�, 0]) = 3,ϕ2([−�, 0]) = 4

Fig. 4 �cr = .3617, �mod = .3413. λ = 10, μ = 1, α = 1,
ε = .2, γ = √

96, � = .35, ϕ1([−�, 0]) = 3,ϕ2([−�, 0]) = 4

As an additional numerical example, on the left of
Fig. 3,we numerically integrate the twoqueues and plot
the queue length as a function of time. In this example,
our lag in information is given by� = .33. We see that
the two equations eventually converge to the same limit
as time is increased toward infinity. This implies that
the system is stable and no oscillations or asynchronous
dynamics will occur due to instability in this case. On
the right of Fig. 3 is a zoomed-in version of the figure
on the left. It is clear that the two delay equations are
converging toward one another and this system is sta-
ble.However, in Fig. 4,we use the same parameters, but
we make the lag in information� = .35. This is below

the critical delay in the constant case and above the
modified critical delay when the time-varying arrival
rate is taken into account. On the right of Fig. 4, we
display a zoomed-in version of the figure on the left.
We see that in this case the two queues oscillate and
asynchronous behavior is observed. Thus, the asymp-
totic analysis performed works well at predicting the
change in stability.

3 Moving average delay fluid model

In this section, we present another fluid model with
customer choice and where the delay information pre-
sented to the customer is a moving average. This model
assumes that customers are informed about the queue
length, but in the form of amoving average of the queue
length between the current time and� time units in the
past. These types of moving average models are cur-
rently used in many healthcare settings such as the one
in Fig. 5. In Fig. 5, it is clear that the time informa-
tion is given in past and is averages over a 4-h win-
dow. This is partially because patients in healthcare
are quite heterogeneous and require different services
and attention. Moreover, the system is not necessary
FIFO or FCFS since patients have different priority
levels. Thus, the moving average waiting time indica-
tor might be attractive for these reasons. Like in the
previous model with constant delays, customers in the
moving average model also have the choice to join two
parallel infinite server queues and they join according
to the same multinomial logit model. Once again, the
extension to more complicated arrival functions such
as λ(t) = λ + λ · α sin(γ t) is quite difficult. However,
like in the constant delay setting, we can analyze the
systemwhen the time-varying arrival rate is close to the

Fig. 5 Emergency room wait times via moving averages
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constant rate case using perturbation theory and asymp-
totics. Thus, we assume that the queue length equations
for the constant delaymodel satisfy the following delay
differential equations

λ(t) ·
exp

(
− 1

�

∫ t
t−�

q1(s)ds
)

exp
(
− 1

�

∫ t
t−�

q1(s)ds
)

+ exp
(
− 1

�

∫ t
t−�

q2(s)ds
)

(3.59)

and join the second queue at rate

λ(t) ·
exp

(
− 1

�

∫ t
t−�

q2(s)ds
)

exp
(
− 1

�

∫ t
t−�

q1(s)ds
)
+exp

(
− 1

�

∫ t
t−�

q2(s)ds
) .

(3.60)

Thus, our model for customer choice with delayed
information in the form of a moving average can be
represented by a two-dimensional system of functional
differential equations
•
q1(t) = (λ + λαε sin(γ t))

×
exp

(
− 1

�

∫ t
t−�

q1(s)ds
)

exp
(
− 1

�

∫ t
t−�

q1(s)ds
)
+exp

(
− 1

�

∫ t
t−�

q2(s)ds
)

− μq1(t) (3.61)

•
q2(t) = (λ + λαε sin(γ t))

×
exp

(
− 1

�

∫ t
t−�

q2(s)ds
)

exp
(
− 1

�

∫ t
t−�

q1(s)ds
)
+exp

(
− 1

�

∫ t
t−�

q2(s)ds
)

− μq2(t) (3.62)

where we assume that q1 and q2 start at different initial
functions ϕ1(t) and ϕ2(t) on the interval [−�, 0].

On the onset, this problem is seemingly more diffi-
cult than the constant delay setting since the ratio now
depends on a moving average of the queue length dur-
ing a delay period �. To simplify the notation, we find
it useful to define the moving average of the i th queue
over the time interval [t − �, t] as

mi (t,�) = 1

�

∫ t

t−�

qi (s)ds. (3.63)

This representation of the moving average leads to
a key observation where we discover that the moving
average itself solves a linear delay differential equation.
In fact, by differentiating Eq. (3.63) with respect to
time, it can be shown that the moving average of the i th

queue is the solution to the following delay differential
equation

•
mi (t,�)= 1

�
· (qi (t)−qi (t−�)) , i ∈{1, 2}.

(3.64)

Leveraging the above delay equation for the mov-
ing average, we can describe our moving average fluid
model with the following four dimensional system of
delay differential equations
•
q1 = (λ + λ · α · ε · sin(γ t))

· exp (−m1(t))

exp (−m1(t)) + exp (−m2(t))
− μq1(t)

(3.65)

•
q2 = (λ + λ · α · ε · sin(γ t))

· exp (−m2(t))

exp (−m1(t)) + exp (−m2(t))
− μq2(t)

(3.66)

•
m1 = 1

�
· (q1(t) − q1(t − �)) (3.67)

•
m2 = 1

�
· (q2(t) − q2(t − �)) . (3.68)

In the moving average model, it is also critical to
understand the case when the arrival rate is constant
and does not depend on time. In Pender et al. [31],
the authors show that the critical delay for the mov-
ing average model can be determined from the model
parameters and the following theorem is from Pender
et al. [31].

Theorem 3.1 For the moving average fluid model
given by Eqs. 3.65–3.68, the critical delay parameter
is the solution to the following transcendental equation

sin

(

� ·
√

λ

�
− μ2

)

+ 2μ�

λ
·
√

λ

�
− μ2 = 0.

(3.69)

Proof See Pender et al. [31]. ��
In order to begin our analysis of the delay differen-

tial equations with a time-varying rate, we need to first
understand the case where ε = 0 and the arrival rate
is constant. Also like in the constant delay setting, this
analysis has been carried out inPender et al. [30,31] and
we give a brief outline of the analysis for the reader’s
convenience.

The first step to understanding the case when ε = 0
to compute the equilibrium in this case. The first part of
the proof is to compute an equilibrium for the solution
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to the delay differential equations. In our case, the delay
differential equations given in Eqs. (3.65)–(3.68) are
symmetric. Moreover, in the case where there is no
delay, the two equations converge to the same point
since in equilibrium each queue will receive exactly
one half of the arrivals and the two service rates are
identical. This is also true in the case where the arrival
process contains delays in the queue length since in
equilibrium, the delayed queue length is equal to the
non-delayed queue length. It can be shown that there is
only one equilibrium where all of the states are equal
to each other. One can prove this by substituting q2 =
λ/μ − q1 in the steady-state version of Eq. (3.65) and
solving for q1. One eventually sees that q1 = q2 is the
only solution since any other solution does not obey
Eq. (3.65). Thus, we have in equilibrium that

q1(t) = q2(t) = q∞(t)

2
as t → ∞ (3.70)

and

m1(t) = m2(t) = 1

�

∫ t

t−�

q∞(s)

2
ds as t → ∞.

(3.71)

Now that we know the equilibrium for Eqs. (3.65)–
(3.68), we need to understand the stability of the delay
differential equations around the equilibrium. The first
step in doing this is to set each of the queue lengths
to the equilibrium values plus a perturbation. Thus, we
set each of the queue lengths to

q1(t) = q∞(t)

2
+ u(t) (3.72)

q2(t) = q∞(t)

2
− u(t) (3.73)

m1(t) = 1

�

∫ t

t−�

q∞(s)

2
ds + w(t) (3.74)

m2(t) = 1

�

∫ t

t−�

q∞(s)

2
ds − w(t) (3.75)

Substitute Eqs. (3.72)–(3.75) into (3.65)–(3.68) and

solve for
•
q∞,

•
u and

•
w.

•
q∞ = λ + λαε sin(γ t) − μq∞(t) (3.76)

•
u = −λ

2 (1 + αε sin(γ t)) tanh(w(t)) − μu(t)

(3.77)

•
w = 1

�
(u(t) − u(t − �)) (3.78)

Equation 3.76 can be solved explicitly, to give the
steady-state solution

q∞(t) = ce−μt + λ

2

×
(
1

μ
+ αε(μ sin(γ t) − γ cos(γ t))

γ 2 + μ2

)

(3.79)

where

c = q∞(0) − λ

2

(
1

μ
− αγ ε

γ 2 + μ2

)
(3.80)

To determine the stability of the system, we linearize
about the point u(t) = w(t) = 0, giving
•
u = −λ

2 (1 + αε sin(γ t))w(t) − μu(t) (3.81)

•
w = 1

�
(u(t) − u(t − �)) (3.82)

First consider the unperturbed case (ε = 0):
•
u = −λ

2w(t) − μu(t) (3.83)

•
w = 1

�
(u(t) − u(t − �)) (3.84)

To study Eqs. (3.83) and (3.84), we set

u = A exp(r t) (3.85)

w = B exp(r t). (3.86)

These solutions imply the following relationships
between the constants A, B, and r.

Ar = −λ

2
B − μA (3.87)

Br = 1

�
(A − A exp(−r�)) (3.88)

solving for A yields

A = − λ

2(μ + r)
B (3.89)

and rearranging yields the following equation for r

r = λ

2� · r (exp(−r�) − 1) − μ. (3.90)

Now it remains for us to understand the transition
between stable and unstable solutions once again.

To find the transition between stable and unstable
solutions, set r = iω, giving us the following equation

iω = λ

2�iω
(exp(−iω�) − 1) − μ. (3.91)

Multiplying both sides by iω and using Euler’s identity,
we have that
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λ

2�
(cos(ω�) − i sin(ω�) − 1) − μiω + ω2 = 0.

(3.92)

Writing the real and imaginary parts of Eq. (3.92), we
get:

cos(ω�) = 1 − 2�ω2

λ
(3.93)

for the real part and

sin(ω�) = −2�μω

λ
(3.94)

Once again by squaring and adding sinω� and cosω�

together, we get:

ω =
√

λ

�
− μ2 (3.95)

Finally by substituting the expression forω into Eqs.
3.94 and 3.93 we obtain the final expression for the
critical delay �cr. The expression for the critical delay
�cr is also the simultaneous solution to the following
transcendental equations:

sin

(

�cr

√
λ

�cr
− μ2

)

+ 2μ�cr

λ

√
λ

�cr
− μ2 = 0

(3.96)

cos

(

�cr

√
λ

�cr
− μ2

)

+ 1 − 2μ2�cr

λ
= 0 (3.97)

Squaring Eqs. (3.96) and (3.97) and adding them,
we see that they are satisfied simultaneously when

2 +
(
2 − 4�crμ

2

λ

)
cos

(

�cr

√
λ

�cr
− μ2

)

+4�crμ

λ

√
λ

�cr
− μ2 sin

(

�cr

√
λ

�cr
− μ2

)

= 0

(3.98)

3.1 Asymptotic expansions for moving average model

Now that we understand the case where ε = 0, it
remains for us to understand the general case. Recall
that we are analyzing the stability of the linearized sys-
tem

•
u = −λ

2 (1 + αε sin(γ t))w(t) − μu(t) (3.81)

•
w = 1

�
(u(t) − u(t − �)) (3.82)

It is useful to convert the system of two first-order
equations to a single second-order equation, by differ-
entiating Eq. (3.81) and substituting in expressions for

w(t) and
•
w(t) from Eqs. (3.81) and (3.82). We obtain

••
u =

(
αγ ε cos(γ t)

αε sin(γ t) + 1
− μ

)
•
u

+
(

αγμε cos(γ t)

αε sin(γ t) + 1
− λ + αλε sin(γ t)

2�

)
u

+
(

λ + αλε sin(γ t)

2�

)
u(t − �) (3.99)

However, since the arrival rate is not constant this
time, we do not have a simple way to find the stability
of the equation. Therefore, we will exploit the fact that
the time-varying arrival rate is near the constant arrival
rate and use the two-variable expansion method.

Theorem 3.2 The only resonant frequency γ of the
time-varying arrival rate function for the first-order
two-variable expansion is γ = 2ωcr. For this value of
γ , the change in stability occurs at �)mod where

�mod = �cr ± ε

√
α2�2

cr

�crλ + 4�crμ + 4
(3.100)

where the sign of the ε term is positive if �cr >
λ−2μ
2μ2

and negative if �cr <
λ−2μ
2μ2 .

Proof We expand time into two variables ξ and η that
represent regular and slow time, respectively, i.e.,

ξ = t (regular time) and η = εt (slow time).

(3.101)

Therefore, u(t) now becomes u(ξ, η). Moreover,

•
u = du

dt
= ∂u

∂ξ

dξ

dt
+ ∂u

∂η

dη

dt

= ∂u

∂ξ
+ ε

∂u

∂η
(3.102)

••
u = d2u

dt2
= d

dt

(
∂u

∂ξ
+ ε

∂u

∂η

)

= dξ

dt

∂

∂ξ

(
∂u

∂ξ
+ ε

∂u

∂η

)
+ dη

dt

∂

∂η

(
∂u

∂ξ
+ ε

∂u

∂η

)
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= ∂2u

∂ξ2
+ 2ε

∂2u

∂ξ∂η
+ ε2

∂2u

∂η2
(3.103)

Additionally, we have that

u(t − �) = u(ξ − �, η − ε�) (3.104)

In discussing the dynamics of 2.25, we will detune the
delay � off of its critical value:

� = �cr + ε�1 + O(ε2) (3.105)

Substituting Eqs. (3.105) into (3.104) and expanding
as a series in ε, we get

u(t − �) = ū − ε�1
∂ ū

∂ξ
− ε�cr

∂ ū

∂η
+ O(ε2)

(3.106)

where

ū ≡ u(ξ − �cr, η).

Now, we expand u in a power series in terms ε:

u = u0 + εu1 + O(ε2) (3.107)

Substituting Eqs. (3.102, 3.103, 3.106) and (3.107)
into Eq. (3.99), expanding as a series in ε, collecting
like terms, and equating like powers of ε, we get

∂2u0
∂ξ2

+ ∂u0
∂ξ

+ λ

2�cr
(u0 − ū0) = 0 (3.108)

∂2u1
∂ξ2

+ ∂u1
∂ξ

+ λ

2�cr
(u1 − ū1)

=
(

αγμ cos(γ ξ) + λ (�1 − α�cr sin(γ ξ))

2�2
cr

)
u0

+λ (α�cr sin(γ ξ) − �1)

2�2
cr

ū0 − μ
∂u0
∂η

− λ

2

∂ ū0
∂η

+αγ cos(γ ξ)
∂u0
∂ξ

− λ�1

2�cr

∂ ū0
∂ξ

− 2
∂2u0
∂ξ∂η

(3.109)

Equation (3.108) is linear, constant-coefficient, homo-
geneous, and does not involve any derivatives with
respect to η. In fact, it is the equation that results from
converting the ε = 0 system (Eqs. 3.83–3.84) to a sin-
gle second-order equation. So, we write down the solu-
tion:

u0 = A(η) cos(ωcrξ) + B(η) sin(ωcrξ) (3.110)

The functions A(η) and B(η) give the slow flow of
the system. We find differential equations on A(η) and
B(η) by substitutingEqs. (3.110) into (3.109) and elim-
inating the resonant terms. We compute ū0 and its par-
tial derivatives using expressions for cos(�crωcr) and
sin(�crωcr) given by Eqs. (3.96) and 3.97. For exam-
ple:

ū0 = A(η) cos(ωcr(ξ − �cr))+B(η) sin(ωcr(ξ − �cr))

= (A(η) cos(�crωcr) − B(η) sin(�crωcr)) cos(ωcrξ)

+ (A(η) sin(�crωcr) + B(η) cos(�crωcr)) sin(ωcrξ)

=
⎛

⎝B(η)
2�crμ

λ

√
λ−�crμ2

�cr
−A(η)

(
λ−2�crμ

2
)

λ

⎞

⎠

× cos(ωcrξ)

+
⎛

⎝−A(η)
2�crμ

λ

√
λ − �crμ2

�cr
− B(η)

(
λ − 2�crμ

2
)

λ

⎞

⎠

× sin(ωcrξ) (3.111)

After substituting these expressions into Eq. (3.109)
and using angle-sum identities, the remaining trigono-
metric terms are of the forms

cos(ωcrξ), sin(ωcrξ), cos((ωcr ± γ )ξ),

sin((ωcr ± γ )ξ) (3.112)

Notice that γ = 2ωcr is the only resonant frequency for
the arrival function. For any other value of γ , the terms
involving γ at O(ε) are non-resonant, and the first-
order two-variable expansion method does not cap-
ture any effect from the time-varying arrival function.
Therefore, we set γ = 2ωcr, and Eq. (3.109) becomes

∂2u1
∂ξ2

+ ∂u1
∂ξ

+ λ

2�cr
(u1 − ū1)

= [
c1A

′(η)+c2B
′(η)+c3A(η)+c4B(η)

]
cos(ωcrξ)

+ [
c5A

′(η)+c6B
′(η)+c7A(η)+c8B(η)

]
sin(ωcrξ)

+ non-resonant terms (3.113)

where the coefficients ci depend on λ,μ, α,�cr and
�1.

Elimination of secular terms in Eq. (3.113) gives the
slow flow equations on A(η) and B(η):

dA

dη
= K1A(η) + K2B(η) (3.114)

dB

dη
= K3A(η) + K4B(η) (3.115)
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where

K1 =
α�cr

√
λ

�cr
− μ2

(
μ�cr

(−4μ2�cr+3λ − 6μ
)+4λ

) − 2�1
(
λ − μ2�cr

)
(λ − 2μ (μ�cr + 1))

�cr
(
�cr

(
8μ3�cr − λ2 − 12λμ + 12μ2

) − 16λ
) (3.116)

K2 =
α�cr

(
λ − μ2�cr

) (−4μ2�cr + λ − 6μ
) + �1

√
λ

�cr
− μ2

(
�cr

(−4μ3�cr + λ2 + 8λμ − 4μ2
) + 8λ

)

�cr
(
�cr

(
8μ3�cr − λ2 − 12λμ + 12μ2

) − 16λ
)

(3.117)

K3 =
α�cr

(
λ − μ2�cr

) (−4μ2�cr + λ − 6μ
) + �1

√
λ

�cr
− μ2

(
�cr

(
4μ3�cr − λ2 − 8λμ + 4μ2

) − 8λ
)

�cr
(
�cr

(
8μ3�cr − λ2 − 12λμ + 12μ2

) − 16λ
)

(3.118)

K4 =
α�cr

√
λ

�cr
− μ2

(
μ�cr

(
4μ2�cr − 3λ + 6μ

) − 4λ
) − 2�1

(−2μ2�cr + λ − 2μ
) (

λ − μ2�cr
)

�cr
(
�cr

(
8μ3�cr − λ2 − 12λμ + 12μ2

) − 16λ
) (3.119)

The equilibrium point A(η) = B(η) = 0 of the slow
flow corresponds to a periodic solution for u0, and the
stability of the equilibrium corresponds to the stability
of that periodic solution. The stability is determined by
the eigenvalues of the matrix

K =
[
K1 K2

K3 K4

]
(3.120)

If both eigenvalues have negative real part, the equilib-
rium is stable. Since the eigenvalues are cumbersome to
work with directly, we use the Routh–Hurwitz stability
criterion:

Denote the characteristic polynomial of K by

det(K − r I ) = a0 + a1r + a2r
2 = 0 (3.121)

Then both eigenvalues have negative real part if and
only if all the coefficients satisfy ai > 0. From Eqs.
(3.116)–(3.119), we have

a0 = − λ
(
λ − �crμ

2
) (

�2
1(�cr(λ+4μ)+4) − α2�2

cr

)

�3
cr

(−�crλ2 − 4λ(3�crμ+4)+4�crμ2(2�crμ + 3)
)

(3.122)

a1 = 4�1
(
λ − �crμ

2
)
(λ − 2μ(�crμ + 1))

�cr
(−�crλ2 − 4λ(3�crμ + 4) + 4�crμ2(2�crμ + 3)

)

(3.123)
a2 = 1 (3.124)

Recall from Eq. (3.95) that ω is only positive when
0 < �cr < λ/μ2. Using this restriction, we find that
the coefficients are all positive when

0 < λ ≤ 2μ

�1 >

√
α2�2

cr

�crλ + 4�crμ + 4
(3.125)

or alternatively when

λ > 2μ

0 < �cr <
λ − 2μ

2μ2

�1 < −
√

α2�2
cr

�crλ + 4�crμ + 4
(3.126)

or when

λ > 2μ
λ − 2μ

2μ2 < �cr <
λ

μ2

�1 >

√
α2�2

cr

�crλ + 4�crμ + 4
(3.127)

Thus, the change of stability occurs at

� = �cr ± ε

√
α2�2

cr

�crλ + 4�crμ + 4
(3.128)

where the sign of the ε term depends on �cr, λ and μ

as in Eqs. (3.125)–(3.127). ��
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Fig. 6 �cr = 2.1448, �mod = 2.2183. λ = 10, μ = 1,
α = 1, ε = .2, γ = √

10/�cr − 1, � = 2.18, ϕ1([−�, 0]) =
3,ϕ2([−�, 0]) = 4

Fig. 7 �cr = 2.1448, �mod = 2.2183. λ = 10, μ = 1, α = 1,
ε = .2, γ = √

10/�cr − 1, � = 2.25, ϕ1([−�, 0]) = 3.9,
ϕ2([−�, 0]) = 4

3.2 Numerics for moving average queueing model

In this section, we numerically integrate the delay two
examples of delay differential equations with moving
averages and compare the asymptotic results for deter-
mining the Hopf bifurcation that occurs. On the left of
Fig. 6,we numerically integrate the twoqueues and plot
the queue length as a function of time. In this example,
our lag in information is given by� = 2.18.We see that
the two equations eventually converge to the same limit
as time is increased toward infinity. This implies that

the system is stable and no oscillations or asynchronous
dynamics will occur due to instability in this case. On
the right of Fig. 6 is a zoomed-in version of the figure on
the left. It is clear that the two delay equations are con-
verging toward one another and this system is stable.
However, in Fig. 7 we use the same parameters, but we
make the lag in information � = 2.25. This is below
the critical delay in the constant case and above the
modified critical delay when the time-varying arrival
rate is taken into account. On the right of Fig. 7, we
display a zoomed-in version of the figure on the left.
We see that in this case the two queues oscillate and
asynchronous behavior is observed. Thus, the asymp-
totic analysis performed works well at predicting the
change in stability.

4 Conclusion and future research

In this paper, we analyze two new two-dimensional
fluid models that incorporate customer choice, delayed
queue length information, and time-varying arrival
rates. Thefirstmodel considers the customer choice as a
multinomial logit model where the queue length infor-
mation given to the customer is delayed by a constant
�. In the second model, we consider customer choice
as a multinomial logit model where the queue length
information given to the customer is a moving average
over an interval of �. In the constant arrival case for
both models, it is possible to derive an explicit thresh-
old for the critical delay where below the threshold
the two queues are balanced and converge to the equi-
librium. However, when the arrival rate is time vary-
ing, this problem of finding the threshold is more diffi-
cult. When the time variation is small, we show using
asymptotic techniques that the new threshold changes
when the arrival rate frequency is twice that of the crit-
ical delay frequency. It is important for operators of
queues to determine and know these thresholds since
using delayed information can have such a large impact
on the dynamics of the business.

Since our analysis is the first of its kind in the queue-
ing literature, there are many extensions that are wor-
thy of future study. One extension that we would like to
explore is the use of different customer choice functions
and incorporating customer preferences in the model.
With regard to customer preferences, this is non-trivial
problem because the equilibrium solution is no longer
a simple expression, but the solution to a transcenden-
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tal equation. This presents new challenges for deriv-
ing analytical formulas that determine synchronous or
asynchronous dynamics. A detailed analysis of these
extensions will provide a better understanding of what
types of information and how the information that oper-
ations managers provide to their customers will affect
the dynamics of the system. However, wemight be able
to use asymptotic techniques for these extensions if we
expand around a solution that we know well. Finally,
we would like to generalize the arrival and service dis-
tribution to follow general distributions. An extension
to general distributions would aid in showing how the
non-exponential distributions affect the dynamics of
the empirical process. Recent work by Ko and Pen-
der [24,25], Pender and Ko [29] provides a Poisson
process representation of phase-type distributions and
Markovian arrival processes. This work might be use-
ful in deriving delay differential equation systems for
the queueing process with non-renewal arrival and ser-
vice processes. We plan to explore these extensions in
subsequent work.
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