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Abstract. Cloud computing is a new paradigm where a company makes
money by selling computing resources including both software and hard-
ware. The core part or infrastructure of cloud computing is the data cen-
ter where a large number of servers are available for processing incoming
data traffic. These servers not only consume a large amount of energy
to process data, but also need a large amount of energy to keep cool.
Therefore, a reduction of a few percent of the power consumption means
saving a substantial amount of money for the company as well as reduce
our impact on the environment. As it currently stands, an idle server still
consumes about 60 % of its peak energy usage. Thus, a natural sugges-
tion to reduce energy consumption is to turn off servers which are not
processing data. However, turning off servers can affect the customer
experience. Customers trying to access computing power will experi-
ence delays if their data cannot be processed quickly enough. Moreover,
servers require setup times in order to move from the off state to the on
state. In the setup phase, servers consume energy, but cannot process
data. Therefore, there exists a trade-off between power consumption and
delay performance. In [7,9], the authors analyze this tradeoff using an
M/M/c queue with setup time for which they present a decomposition
property by solving difference equations. In this paper, we complement
recent stationary analysis of these types of models by studying the sample
path behavior of the queueing model. In this regard, we prove a weak
law of large numbers or fluid limit theorem for the queue length and
server processes as the number of arrivals and number of servers tends
to infinity. This methodology allows us to consider the impact of non-
stationary arrivals and abandonment, which have not been considered in
the literature so far.
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1 Introduction

1.1 Motivation

The core part of cloud computing is the data center where a large number
of servers are available to serve the demand generated by the arrival of data
traffic. These servers consume a large amount of energy, which translates into a
large cost for many cloud computing companies. It is reported that data centers
worldwide consume as much as about 20–30 GW of electricity [11]. However,
a large part of this energy is consumed by idle servers which do not process
any jobs. In fact, it is reported that an idle server still consumes about 60 %
of its peak energy usage when processing jobs [3]. Thus, an important issue for
the management of these data centers is to minimize the power consumption
while maintaining a high quality of service for their customers. A simple way
to minimize the power consumption in data center is to turn off idle servers.
However, servers that are off eventually need to be turned on in order to process
waiting jobs, which causes more delays. In fact, servers require some setup time
in order to gain the ability to start processing jobs. Moreover, during this setup
time, servers also consume a substantial amount of energy but cannot process
waiting jobs. Thus, there exists a trade-off between saving power and the quality
of service provided by the company. This motivates our study of multiserver
queues with setup times.

In practice, the amount of requests that arrive at a data center varies time to
time. It is natural that traffic in daytime is different from that in nighttime. The
amount of traffic is also different on weekdays and weekends. This motivates us
to consider time-non-homogeneous arrival processes. Furthermore, today data
centers are partially operated by renewable energy such that wind energy or
solar energy [11]. These energy sources depend on the weather and often vary
on time. Thus, the number of available servers is time-dependent. This calls for
the need of studying a queueing system with time-dependent number of servers.
As mentioned above since setup time not only incurs in extra waiting time it
may also incur in increasing energy consumption because a server consumes a
large amount of energy during setup. Therefore, it is not a good strategy to turn
off a server immediately upon idle. In our model, we allow an idle time before
shutdown. A job arriving during the idle time is served immediately while if
there is no arriving customer during the idle time, the server is switched off.
Requests to data centers have time limiting nature and thus they will abandon
after some waiting time. This may cause by impatient user or by the timeout of a
web browser. We incorporate customer abandonment in our model. We allow all
the setup rate and abandonment rate to be time-dependent. To the best of our
knowledge, this paper is the first to consider a time-dependent queueing model
for power-saving data centers.

1.2 Literature Review

Artalejo et al. [2] present a thorough analysis for multiserver queues with setup
times where the authors consider the case in which at most one server can be in
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the setup mode at a time. This policy is later referred to as staggered setup in
the literature [9]. Artalejo et al. [2] show an analytical solution by solving the set
of balance equations for the joint stationary distribution of the number of active
servers and that of jobs in the system using a difference equation approach.
The solution of the staggered setup model is significantly simplified by Gandhi
et al. [9] who also present a decomposition property for the queue length and
the waiting time.

Recently, motivated by applications in data centers, multiserver queues with
setup times have been extensively investigated in the literature. In particular,
Gandhi et al. [9] present a stationary analysis for multiserver queues with setup
times. They obtain some closed form approximations for the ON-OFF policy
where any number of servers can be in the setup mode. As is pointed out in
Gandhi et al. [9], from an analytical point of view the most challenging model is
the ON-OFF policy where the number of servers in setup mode is not limited.
Recently, Gandhi et al. [7,8] analyze the M/M/c/Setup model with ON-OFF
policy using a recursive renewal reward approach. Gandhi et al. [7,8] claim that
the model is difficult to be solved using conventional methods such as generating
function or matrix analytic methods. As a result, the recursive renewal reward
approach is presented as a new mathematical tool to resolve the problem. Phung-
Duc [28] analyzes the same model via generating function and matrix analytic
methods. It should be noted that in all the work above, arrival, service and setup
processes are time-homogeneous and abandonment of customers is not taken into
account.

However, as is mentioned above, in reality, traffic to data center has time-
inhomogeneous nature because it is generated by human users whose activities
clearly depend on time. Furthermore, nowadays, many data centers partially
operate using renewable resources such as wind or solar energies [1,10]. As a
result, the number of available servers also depends on time. On the other hand,
ON-OFF control of servers may also incur in extra delays which cause abandon-
ment of customers. Therefore, there is a need to develop and analyze a model
taking into account all of these factors and that is the aim of the current paper.

1.3 Main Contributions of Paper

In this work, we make the following contributions to the literature on queueing
theory:

1. We develop a new queueing model that incorporates a stochastic number of
servers with the Delay-off feature, abandonment of jobs, and nonstationary
arrival times of jobs.

2. We propose a heuristic mean field limit for the queue length and non-idle
server processes.

3. We prove that the mean field heuristic is asymptotically true when the arrival
rate and number of servers tend to infinity.
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1.4 Organization of Paper

The rest of this paper is organized as follows. Section 2 presents the model in
detail while Sect. 3 is devoted to the analysis where we present a mean field
approximation and fluid limit. Section 4 shows some numerical examples showing
insights into the performance of the system. Concluding remarks are presented
in Sect. 5.

1.5 Notation

The paper will use the following notation:

– λ(t) is the external arrival rate of jobs to the data center at time t
– μ(t) is the service rate of all of the servers at time t
– θ(t) is the abandonment rate of jobs at time t
– β(t) is the rate at which needed servers transition from the OFF state to the

ACTIVE (BUSY) state at time t
– γ(t) is the rate at which unneeded servers transition from the IDLE state to

the OFF state at time t
– Cmax is the bound on the number of servers in the data center facility
– x ∧ y = min(x, y)
– (x − y)+ = max(0, x − y)

2 Mt/M/c/Delayoff-Setup+M Queueing Model

We consider Mt/M/Cmax(t)/Setup+M queueing systems with ON-OFF policy.
Jobs arrive at the system according to a time-dependent Poisson process with
rate λ(t). In this system, after a service completion, if there is a waiting job,
the server pickups this job to process immediately. Otherwise, the server stays
IDLE for a while and then is switched off. We assume that the switch-off time is
instantaneous. The service rate of a server is μ(t). The rate at which the server
changes to OFF state is γ(t). However, if there is some waiting customer, an
OFF server is switched to the ON state with rate β(t). We call β(t) the setup
rate. Because jobs have time-limiting nature, we assume that each waiting job
abandons with rate θ(t). For this system, let Q(t) denote the number of jobs
in the system at time t and C(t) denote the total number of BUSY and IDLE
servers at time t. In our system, a server can take one of the following states:
OFF, IDLE (not serving a job), BUSY (serving a job), SETUP. In the OFF
state, the server does not consume energy but also does not process a job. In
the IDLE state, the server consumes energy but does not process any job. In
this the IDLE state, the server can process an arriving job immediately. If a job
arrives at the system and there are not idle servers, the job is queued and an
OFF server is activated and that server changes to the SETUP state. After the
setup time, the server processes the waiting job.

Under our setting, the number of servers in setup at time t is given by
S(t) = ((Q(t) − C(t))+ ∧ (Cmax(t) − C(t)) and the number of IDLE servers
at time t is given by (C(t) − Q(t))+, respectively.
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We will model our version of the setup queue model with abandonment with
a two dimensional Markov process. In fact, it is possible to derive a sample path
representation of the queueing model via the work of [17] or [18] that is given
by the following stochastic integral equation

Q(t) = Q(0) + Π1

(∫ t

0

λ(s)ds

)
− Π2

(∫ t

0

μ(s) · (Q(s) ∧ C(s))ds

)

−Π3

(∫ t

0

θ(s) · (Q(s) − C(s))+ds

)
(1)

C(t) = C(0) + Π4

(∫ t

0

β(s) · S(s)ds

)

−Π5

(∫ t

0

γ(s) · (C(s) − Q(s))+ds

)
. (2)

The first stochastic process Q(t) is for the queue length and the second stochastic
process C(t) is to keep track of the total number of busy servers and idle servers.
With this construction, we need to define the Poisson processes Πi that are
used. For the first Poisson process Π1, it counts the number of arrivals of jobs
to be processed at the data center during the interval (0, t]. For Π2, we have
that it counts the number of service completions from the data center in the
interval (0, t]. Similarly, Π3, we have that it counts the number of jobs that
have abandoned or timed out from the data center in the interval (0, t]. For the
Poisson process Π4 we have that it counts the number of servers that have been
turned on when there is sufficient number of jobs that need to be processed.
Lastly, Π5 represents the number of servers that have been turned off because
the idle times expire and jobs do not arrive.

With our stochastic model representation for a data center, there are several
important observations to make under certain parameter settings. When we
let the delay-off parameter γ = 0, we construct a situation where none of the
servers can be turned off. Thus, the number of servers will increase until it
reaches its maximum and when the maximum is reached, the queue will behave
as a nonstationary multiserver or Mt/M/Cmax queue. When γ = ∞ server is
turned off immediately when they are considered to be idle. In this case, the
number of servers mimicks the number of jobs in the system as the number of
jobs decreases. Moreover, in this setting, the least amount of energy is used since
servers are immediately turned off when they become idle. However, turning a
server off immediately can cause unnecessary delays for future jobs.

Since the joint process (Q(t), C(t)) is clearly Markovian with time-dependent
infinitesimal generator At defined on continuous and bounded functions h : R×
R → R which has the following representation

Ath(x, y) ≡ lim
Δ→0

E[g(t,Δ)|(Q(t), C(t)) = (x, y)] − h(x, y)
Δ

=
∑
c∈C

rc(x, y, t) · [h(x + δ(x,c), y + δ(y,c)) − h(x, y)],
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where g(t,Δ) = h(Q(t + Δ), C(t + Δ)). It thus follows by Dynkin’s formula, see
for example Lemma 17.21 of [15], that for t ∈ R+

E[h(Q(t), C(t))] = h(x0, y0) +
∫ t

0

E[Ash(Q(s), C(s))]ds

Using the Dynkin’s formula for Markov processes and the Poisson process
representation of the stochastic queueing model, we can subsequently derive
the functional Kolmogorov forward equations for the two dimensional Markov
process as

d

dt
E[h(Q(t), C(t))] ≡

•
E[h(Q(t), C(t))]

≡
•
E[h(Q(t), C(t)) | Q(0) = Q0, C(0) = C0 ]

= E[λ(t) · (h(Q + 1, C) − h(Q,C))]
+ E[μ(t) · (Q ∧ C) · (h(Q − 1, C) − h(Q,C))]
+ E[θ(t) · (Q − C)+ · (h(Q − 1, C) − h(Q,C))]
+ E[β(t) · (S · (h(Q,C + 1) − h(Q,C))]
+ E[γ(t) · (C − Q)+ · (h(Q,C − 1) − h(Q,C))],

where we omit (t) of Q(t), C(t) and S(t) in the right hand side for simplicity.
When we let h(x, y) := x or h(x, y) := y, we have the following equations for the
mean queue length and mean number of non-idle servers

•
E[Q(t)] = λ(t) − μ(t) · E[(Q ∧ C)] − θ(t) · E[(Q − C)+]
•
E[C(t)] = β(t) · E[((Q − C)+ ∧ (Cmax − C)] − γ(t) · E[(C − Q)+].

Equations for second-order moments can be obtained by choosing h(x, y) :=
(x · y, x2, y2). In fact, monomial functions of any order can be used to obtain
equations for moments of arbitrary orders by letting h(x, y) := xi · yj . However,
if the rate functions, which define the time changed Poisson processes, are non-
linear (as is usually the case and is the case here), the term E[Ash(Q(s), C(s))]
will involve expectations of non-linear functions of the stochastic processes and
will thus need to be simplified by applying some form of moment-closure approx-
imation. One type of moment closure technique is the mean field approximation.

2.1 Mean Field Approximation

Using the functional Kolmogorov forward equations as outlined in [5,12,19,20],
we have the following system of differential equations for the mean queue length
and the mean number of non-idle servers

•
E[Q(t)] = λ(t) − μ(t) · E[(Q ∧ C)] − θ(t) · E[(Q − C)+]
•
E[C(t)] = β(t) · E[((Q − C)+ ∧ (Cmax − C)] − γ(t) · E[(C − Q)+]
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Now if we use a mean field approximation i.e.

E[f(X)] = f(E[X]) (3)

we have that
•
E[Q(t)] ≈ λ(t) − μ(t) · (E[Q] ∧ E[C]) − θ(t) · (E[Q] − E[C])+
•
E[C(t)] ≈ β(t) · ((E[Q] − E[C])+ ∧ (Cmax − E[C]) − γ(t) · (E[C] − E[Q])+

Unlike the exact equations for the mean queue length and the mean number
of non-idle servers, the system of equations for the mean field approximation is
an autonomous dynamical system and can be solved numerically quite easily.
However, this approximation is a heuristic and is not rigorous. We will show
in the sequel that the mean field approximation can be made rigorous by an
appropriate scaling limit of our queueing model.

3 A Weak Law of Large Numbers Limit

In order to prove a fluid limit for the queue length process and the number of
servers, we need to scale our system appropriately. We define Qη(t) and Cη(t) as
the following stochastic processes in terms of time changed Poisson processes.

Qη(t) = Qη(0) + Π1

(∫ t

0

ηλ(s)ds

)
− Π2

(
η

∫ t

0

μ(s) · (Q̄η(s) ∧ C̄η(s))ds

)

−Π3

(∫ t

0

ηθ(s) · (Q̄η(s) − C̄η(s))+ds

)

Cη(t) = Cη(0) − Π5

(∫ t

0

η γ(s) · (C̄η(s) − Q̄η(s))+ds

)
+ Π4

(
η

∫ t

0

β(s) · S̄η(s)ds

)

where

Q̄η(t) =
1
η
Qη(t), C̄η(t) =

1
η
Cη(t), S̄η(t) =

1
η
Sη(t).

Let D (
[0,∞),R2

)
be the space of right continuous functions with left limits

in R
2 having the domain [0,∞). We give the space D (

[0,∞),R2
)

the standard
Skorokhod J1 topology. Suppose {Xη}∞

η=1 is a sequence of stochastic processes,
then Xη ⇒ x means that Xη converges weakly to the stochastic process x.

Definition 1. If there exists a limit in distribution for the scaled processes
{Q̄η}∞

η=1 and {C̄η}∞
η=1 i.e. Q̄η(t) ⇒ q(t) and C̄η(t) ⇒ c(t), then (q(t), c(t))

is called the fluid limit for the original stochastic model.

Proposition 1. The sequence of scaled stochastic processes (Q̄η, C̄η) are rela-
tively compact and all weak limits are almost surely continuous.

Proof. In order to show that (Q̄η, C̄η) is relatively compact with continuous lim-
its, it is sufficient by Theorem 10.2 of [6] to show that the stochastic processes
satisfy the following two conditions.
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1. Compact Containment: for any T ≥ 0, ε > 0, there exists a compact set
ΓT ⊂ R

2 such that

lim
η→∞P

((
Q̄η, C̄η

) ∈ ΓT , t ∈ [0, T ]
) → 1, (4)

2. Oscillation Bound: for any ε > 0, and T ≥ 0 there exists a δ > 0 such that

lim sup
η→∞

P
(
ω

((
Q̄η, C̄η

)
, δ, T

) ≥ ε
) ≤ ε, (5)

where
ω (x, δ, T ) := sup

s,t∈[0,T ],|s−t|<δ

max
j

|xj(s) − xj(t)|, (6)

The proof of compact containment can be shown easily since there are no
initial customers in the queue. Even if there were initial customers in the system,
we can still bound the initial customers by a constant. In the case where there
are no initial customers in the system, we can bound the queue length process by
the arrival process. By defining the following quantity

λ̄ = sup
t∈[0,T ]

λ(t) (7)

it is trivial to show using the Law of Large numbers for Poisson processes that

ΓT =
{

(q, c)
∣∣∣ q + c ≤ q(0) + λ̄ · T + Cmax

}
(8)

that the compact containment condition holds. Now it remains to prove the oscil-
lation bound for the queueing process. First we bound the difference of the queue
length process

Qη(t) − Qη(u) ≤ Π1

(
η ·

∫ t

u

λ(s)ds

)
+ Π2

(∫ t

u

μ(s) · (Qη(s) ∧ Cη(s))ds

)

+ Π3

(∫ t

u

θ(s) · (Qη(s) − Cη(s))+ds

)

Now we bound the difference of the process that keeps track of the number of
servers that are not idling.

Cη(t) − Cη(u) ≤ Π4

(∫ t

u

β(s) · Sη(s)ds

)
+ Π5

(∫ t

u

γ(s) · (Cη(s) − Qη(s))+ds

)

From the compact containment property, we know that there exists a finite con-
stant K∗ such that

P
(
Q̄η(s) + C̄η(s) ≤ K∗, s ∈ [0, T ]

) → 1, as η → ∞. (9)

Thus on the event Ωη = {Q̄η(s) + C̄η(s) ≤ K∗, s ∈ [0, T ]}, then we have the
subsequent inequalities for the rate functions for all u, t ∈ [0, T ] where |t−u| ≤ δ.
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∫ t

u

λ(s)ds ≤ λ̄ · δ =: c1(δ)
∫ t

u

μ(s) · (Q̄η(s) ∧ C̄η(s))ds ≤ (μK∗) · δ =: c2(δ)
∫ t

u

θ(s) · (Q̄η(s) − C̄η(s))+ ≤ (θK∗) · δ =: c3(δ)
∫ t

u

β(s) · ((Q̄η(s) − C̄η(s))+ ∧ (C̄η
max(s) − C̄η(s))ds ≤ (βK∗) · δ =: c4(δ)

∫ t

u

γ(s) · (C̄η(s) − Q̄η(s))+ds ≤ (γK∗) · δ =: c5(δ)

Now by using the above inequalities, the Law of Large numbers for Poisson
processes, and the continuity of the moduli of continuity function, the oscillation
bound holds with

δ =
ε

λ̄ + (μ + θ + β + γ) · K∗ . (10)

Now the proof is complete.

Theorem 1. If we are given determinsitic values (q(0), c(0)) and we assume
that (Q̄η(0), C̄η(0)) ⇒ (q(0), c(0)) as η → ∞, then the fluid limit

lim
η→∞

1
η
Qη(t) ⇒ q(t) and lim

η→∞
1
η
Cη(t) ⇒ c(t)

of the original stochastic queueing model is the unique solution to the following
system of ordinary differential equations

d

dt
q(t) = λ(t) − μ(t) · (q(t) ∧ c(t)) − θ(t) · (q(t) − c(t))+

d

dt
c(t) = β(t) · (q(t) − c(t))+ ∧ (cmax(t) − c(t)) − γ(t) · (c(t) − q(t))+. (11)

Proof. Now that we know that the queueing and server non-idle processes are rel-
atively compact, we can now use this result to prove the fluid limit theorem. Since(
Q̄η(·), C̄η(·)) is relatively compact, we know that that given any subsequence(
Q̄ηm(·), C̄ηm(·)) we can construct another subsequence

(
Q̄ηml (·), C̄ηml (·)) that

converges weakly in D([0,∞),R2), to a continuous process (q∗(·), c∗(·)). Thus, we
know that v∗(·) is at least one limit of the original stochastic process sequence(
Q̄η(·), C̄η(·)). Therefore, if we can prove that (q∗(·), c∗(·)) satisfies the fluid

limit Eq. (11) and the fluid limit equations have a unique solution, then by the
arbitrariness of the limit v∗(·), there exists unique fluid limit that is given by the
equations of (11). From the representation of

(
Q̄η(t), C̄η(t)

)
we have that

Q̄η(t) = Q̄η(0) + Mη
Q

(
Q̄η(t), C̄η(t)

)
+

∫ t

0

Aη
Q

(
Q̄η(u), C̄η(u)

)
du

C̄η(t) = C̄η(0) + Mη
C

(
Q̄η(t), C̄η(t)

)
+

∫ t

0

Aη
C

(
Q̄η(u), C̄η(u)

)
du
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where

Mη
Q

(
Q̄η(t), C̄η(t)

)
=(

1
η

· Π1

(
η ·

∫ t

0

λ(s)ds

)
−

∫ t

0

λ(s)ds

)

− 1
η

· Π2

(∫ t

0

μ(s) · (Qη(s) ∧ Cη(s))ds

)
+

∫ t

0

μ(s) · (Q̄η(s) ∧ C̄η(s))ds

− 1
η

· Π3

(∫ t

0

θ(s) · (Qη(s) − Cη(s))+ds

)
+

∫ t

0

θ(s) · (Q̄η(s) − C̄η(s))+ds

Mη
C

(
Q̄η(t), C̄η(t)

)
=

1
η

· Π4

(∫ t

0

β(s) · Sη(s)ds

)
−

∫ t

0

β(s) · Sη(s)ds

−1
η

· Π5

(∫ t

0

γ(s) · (Cη(s) − Qη(s))+ds

)
+

∫ t

0

γ(s) · (Cη(s) − Qη(s))+ds

and∫ t

0

Aη
Q

(
Q̄η(u), C̄η(u)

)
du =

∫ t

0

λ(u)du −
∫ t

0

μ(u) · (Q̄η(u) ∧ C̄η(u))du

−
∫ t

0

θ(u) · (Q̄η(u) − C̄η(u))+du

∫ t

0

Aη
C

(
Q̄η(u), C̄η(u)

)
du =

∫ t

0

β(u) · S̄η(u)du −
∫ t

0

γ(u) · (C̄η(u) − Q̄η(u))+du

Since we know that V̄ηm(·) = (Q̄ηm(·), C̄ηm(·)) d⇒ v∗(·) = (q∗(·), c∗(·)) and
that v∗(·) is continuous, then we have that

Q̄ηm(·) − Q̄ηm(0) −
∫ ·

0

AQ(Q̄ηm)ds
d⇒ q∗(·) − q(0) −

∫ ·

0

AQ(q∗(s))ds

C̄ηm(·) − C̄ηm(0) −
∫ ·

0

AC(C̄ηm)ds
d⇒ c∗(·) − c(0) −

∫ ·

0

AC(c∗(s))ds.

Thus, if we can show that

lim
m→∞Mηm(·) ≡ lim

m→∞(Mηm

Q (·),Mηm

C (·)) = 0, (12)

then we have that all of the limits satisfy the fluid limit Eq. (11) and since the
functional A(·) is Lipschitz continuous, the fluid equations have a unique solu-
tion. This implies that all of the fluid limits are the same and are all equal to
the solution of the fluid limit Eq. (11). Now it remains to prove that

lim
m→∞Mηm(·) = 0. (13)
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Using the law of large numbers for Poisson processes, we know that

lim
η→∞Y(η ·)/η − · d⇒ 0 in D([0,∞),R). (14)

Moreover, since we have that V̄ηm(·) d⇒ v∗(·) as m → ∞ and we know that the
limit v∗(·) is continuous, then we have that

lim
η→∞

∫ ·

0

μ(s) · (Q̄η(s) ∧ C̄η(s))ds
d⇒
∫ ·

0

μ(s) · (q∗(s) ∧ c∗(s))ds

lim
η→∞

∫ ·

0

θ(s) · (Q̄η(s) − C̄η(s))+ds
d⇒
∫ ·

0

θ(s) · (q∗(s) − c∗(s))+ds

lim
η→∞

∫ ·

0

β(s) · S̄η(s)ds
d⇒
∫ ·

0

β(s) · (q∗(s) − c∗(s))+ ∧ (cmax(s) − c∗(s)))ds

lim
η→∞

∫ ·

0

γ(s) · (C̄η(s) − Q̄η(s))+ds
d⇒
∫ ·

0

γ(s) · (c∗(s) − q∗(s))+ds.

Now by the random time change Theorem of [4], we have that

lim
η→∞ Y S

il

(
ηm

∫ ·

0

f(s, V̄ηm(s))ds

)
/η −

∫ ·

0

f(s, V̄ηm(s)) d⇒ 0

and this completes the proof for the fluid limit since the other terms of Mη(·)
can also be shown to converge to 0.

4 Performance Measures and Numerics

In this section, we compare our limit theorems with a discrete event simulation
of the delay-off queueing process. We show that the fluid limit is quite accurate
at approximating the mean dynamics of the queueing process.

4.1 Mean Queue Length and Mean Non-Idle Servers

Our first comparison between simulation and our fluid limits is given on the left
of Fig. 1. In this example, the turn off rate is of moderate size meaning that it
is not too high or too low. On the left of Fig. 1, we see that the simulated mean
queue length is well approximated by the fluid limit and we also see similar
accuracy for the mean number of idle servers. Our second comparison is given
on the right of Fig. 1 and in this example the turn off rate is high. This situation
is closest to when the servers are immediately shut off when they become idle.
Once again on the right of Fig. 1, we see that the simulated mean queue length
and the mean number of idle servers are well approximated by the mean field
approximation or the fluid limit.
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Fig. 1. λ(t) = 80 + 20 · sin t, μ = 1, θ = 1, β = 1, γ = 1 (Left), γ = 1000 (Right),
Cmax = 80. (Mean Queue Length and Mean Non-Idle Servers).

4.2 Energy Consumption

In addition to understanding how well our limit theorem approximates the actual
stochastic system, it is important to analyze the power consumption of the sys-
tem in a variety of parameter settings.

The mean energy consumption in the nonstationary setting is now given by

E[ActEne(t)] =
∫ t

0

E[C(u)] × c1(u)du,

where c1(t) is the energy cost for an active or idle server at time t. For simplicity
we may consider the simple case where c1(t) = c1.

Furthermore, let S(t) denote the number of servers in setup at time t and
let c2(t) denote the energy cost for a server in setup mode at time t, then the
energy consumption by servers in setup mode is given by

E[SetEne(t)] =
∫ t

0

E[S(u)] × c2(u)du.

By considering a simple case where c2(t) = c2 and since also in practice, it
is empirically seen that c2 = c1. Thus, in the numerical examples, we consider
the case c1 = c2 = 1. The overall energy consumption in the time interval [0, t]
is given by

E[TotalEne(t)] = E[ActEne(t)] + E[SetEne(t)].

We would like to minimize the above total energy consumption. On the other
hand, we also would like to minimize the mean waiting cost which is calculated
based on the queue length, i.e.,

∫ t

0
Q(u)du. Thus, we need to consider a cost

function which is a combination of the power consumption and the waiting cost.
In Figs. 2 and 3, we plot a convex combination of the power used and the

queue length or delay of the system integrated over time. These plots represent
the trade-off between delays experienced by customers and the power cost of the
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Fig. 2. λ(t) = 60+20 · sin t, μ = 1, θ = 1, β = 1, Cmax = 100. Fluid Energy as γ varies
and ω1 = .25, ω2 = .75 (Left). Fluid Energy as γ varies and ω1 = .5, ω2 = .5 (Right).

data center. On the left of Fig. 2, we weight the delay by ω1 = .25 and weight the
power by ω2 = .75. We see that as we increase γ the total power and delay cost
decreases. This is partially because we are weighting the power as more costly in
this example. On the right of Fig. 2, we weight the delay by ω1 = .5 and weight
the power by ω2 = .5. We see that as we increase γ the total power and delay
cost decreases, but only slightly since the weighting is equal. However, we see
that the power is a bit more influential on the cost, but very slight. On the left
of Fig. 3, we weight the delay by ω1 = .75 and weight the power by ω2 = .25.
We see that as we increase γ the total power and delay cost increases. This is
partially because we are weighting the delay as more costly in this example.

On the right of Fig. 3, we plot the power consumption as we vary the parame-
ter γ. We see that we increase γ, the power consumption goes down, especially
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Fig. 3. λ(t) = 60+20 · sin t, μ = 1, θ = 1, β = 1, Cmax = 100. Fluid Energy as γ varies
and ω1 = .75, ω2 = .25. (Left) λ(t) = 60 + 20 · sin t, μ = 1, θ = 1, β = 1, Cmax = 100.
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266 J. Pender and T. Phung-Duc

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250
Power Cost when γ = .01

Time

P
ow

er
 C

os
t

Equal
Power
Queue

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250
Power Cost when γ = 1

Time

P
ow

er
 C

os
t

Equal
Power
Queue

Fig. 4. λ(t) = 60 + 20 · sin t, μ = 1, θ = 1, β = 1, Cmax = 100. Power Cost when
γ = .01 (Left) Power Cost when γ = 1 (Right)

when the queue moves from the overloaded to underloaded regime. However, in
the overloaded setting, the parameter γ does not do much in terms of saving
power consumption.

In Fig. 4, we plot the trade-off between delays experienced by customers (in
terms of Q(t)) and the power cost of the data center over time. In these figures,
we have three different scenarios. The first corresponds to ‘Equal’ where the
power and queue length are weighted equally. The second corresponds to power
where the power cost is multiplied by a factor of 2. Lastly, the third scenario
corresponds to the queue length being multiplied by 2. On the left of Fig. 4, we
see that power is very important and therefore the plot that weights power more
is higher than the plot that weights delay more. However, as γ gets larger on the
right of Fig. 4, this difference between the two plots disappears and is negligible.

5 Conclusion and Final Remarks

In this paper, we analyze multi-server setup queues with non-stationary arrivals
and abandonment. We show that a heuristic mean field limit can be made rigor-
ous by scaling the number of arrivals and servers to infinity. This is an appropri-
ate regime since the amount of data traffic is large and the number of servers in
most data centers is also large. We show that we are able to capture the salient
features of the queueing model with our weak law of large numbers limit.

There are many extensions of this work that are worth pursuing. One exten-
sion that is important is to generalize the arrival and service times of the data.
Currently there is no empirical evidence to support that the inter-arrival and ser-
vice times are exponential random variables. One way to generalize these results
would be to use Markovian Arrival Processes like in the work of [16,26]. More-
over, refining the approximations using orthogonal polynomial methods like in
the work of [22–25,27] is also an important area of study. We hope to consider
these generalizations in future work. Moreover, we would like to incorporate the
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energy impact of using renewable energy such as wind and solar. This would
involve additional stochastic models for understanding the mix and cost of the
energy being provided to the data center. In the case when wind and solar energy
are used, it may be cost effective to keep the servers on even though servers are
not needed since the energy used is cheaper. We plan to pursue this extension
as well. Lastly, we are interested in optimal control methods for these delay-off
systems. In this context, we can use the work of [13,14,21] to find optimal turn
off or on policies for our delay-off model. We also plan to complete this work in
a follow up paper.
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