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Abstract We consider a two dimensional time varying
tandem queue with coupled processors. We assume that jobs
arrive to the first station as a non-homogeneous Poisson
process. When each queue is non-empty, jobs are processed
separately like an ordinary tandem queue. However, if one
of the processors is empty, then the total service capacity
is given to the other processor. This problem has been ana-
lyzed in the constant rate case by leveraging RiemannHilbert
theory and two dimensional generating functions. Since we
are considering time varying arrival rates, generating func-
tions cannot be used as easily. Thus, we choose to exploit
the functional Kolmogorov forward equations (FKFE) for
the two dimensional queueing process. In order to lever-
age the FKFE, it is necessary to approximate the queueing
distribution in order to compute the relevant expectations
and covariance terms. To this end, we expand our two
dimensional Markovian queueing process in terms of a two
dimensional polynomial chaos expansion using the Hermite
polynomials as basis elements. Truncating the polynomial
chaos expansion at a finite order induces an approximate
distribution that is close to the original stochastic process.
Using this truncated expansion as a surrogate distribution,
we can accurately estimate probabilistic quantities of the two
dimensional queueing process such as the mean, variance,
and probability that each queue is empty.
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1 Introduction

In this paper we consider a tandem queueing model con-
sisting of two, yet coupled, stations with the possibility of
abandonment. Jobs arrive at the first station according to a
non-homogeneous Poisson process. If the job receives ser-
vice at the first station, it will proceed to the second station.
However, we also include the possibility for a job to abandon
the system if it does not begin to receive service within an
independent, but exponentially distributed amount of time.
Moreover, if the job receives service from the first station
and moves to the second station, the job can also aban-
don from the second station if it does not receive service
within another independent exponentially distributed amount
of time. Finally, if the job does receive service in the second
station, then it leaves the system entirely. When both stations
are nonempty, a given proportion of the capacity is allocated
to station 1, and the remaining proportion is allocated to sta-
tion 2. However, if one of the stations is empty, the total
service capacity of the stations is allocated to the other sta-
tion.

1.1 Applications of queueing model in
telecommunications

The queueing model with coupled processors that we study
in this paper is an appropriate stochastic model for a variety
of applications in telecommunications and beyond. One such
application that is noted by Resing and Ormeci [25] is data
transfer in bidirectional cable and data networks. An exam-
ple of a bidirectional cable or data network is when a user
sends out data (for example, an e-mail message) while simul-
taneously receiving other data (for example, downloading
music). It is common for the user in cable networks to down-
load more data and information than uploading. If the two
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processors for uploading and downloading are coupled, then
the uploading direction can assist the downloading direction
to speed up the processing. In computer science and the elec-
trical engineering literature this can be called cycle stealing
without switching costs.

Another application for this coupled processor model is
modeling of cellular networks. For instance, one can consider
a system consisting of two neighboring cellular base stations.
A base station will serve its associated users, however, if the
base station is idle when there are no active users associ-
ated with it, then it can assist the neighboring base station
with serving its customers. This is very common in cellular
communication networks. For example, when there are two
base stations, one of which is heavily loaded and the other
which is lightly loaded, a coupled system can ensure that no
capacity is wasted via idle base stations.

An additional application ofwhere ourmodel is relevant is
in the study of shared resources in bandwidth sharing of data
flows. Bandwidth sharing in data flows usually are modeled
using generalized processor sharing queues (GPS queues).
Unlike the priority discipline, the GPS scheme allows for
service differentiation and priorization while never neglect-
ing any class of service. GPS queues are typically coupled
when there is excess capacity that is shared among all the
resources. This coupling speeds up throughput when some
of the capacity would otherwise be idle and wasted.

The last application, is seen in the work of Andradottir et
al. [2]. Although not motivated in telecommunications, they
use the coupled processor model to analyze the throughput of
assembly lines. Suppose that the assembly line has only two
stations.When one station is empty, then the other station can
help decrease the processing time of the non-empty station,
thereby increasing the throughput of the entire assembly line.

1.2 Previous literature

The study of coupled processors is not a new topic. In
a seminal paper, Fayolle and Iasnogorodski [9] were the
first to consider coupled processors. In their paper, they
analyzed two coupled servers in parallelwith exponential ser-
vice times. To gain quantitative insights about the queueing
process, they derived a solution for the generating function
of the stationary distribution of the Markov process describ-
ing the number of jobs in both queues, exploiting the theory
of Riemann-Hilbert boundary value problems. Cohen and
Boxma [7] extended the model by analyzing the coupled
processor model for the case of generally distributed ser-
vice times and Boxma and Ivanovs [5] study the workload
processes under generally distributed service times and a
Levy input process. Konheim et al. [12] use a novel uni-
formization method to determine the generating function of
the queue length process of both queues in a parallel and not
a tandem setting. Their method however, only considers the

case when the queues have both identical arrival and service
rates. Blanc et al. [4] study the tandem queueing model using
boundary value theory with general service times at the first
station, but they do not consider coupled processors. A power
seriesmethod has been used to study the coupled processor in
Blanc [3]. Lastly, in the computer science literature, Osogami
et al. [18] study the coupled processor with switching costs
and analyze cycle stealing problems in computer networks.

Although most of the past research on this problem has
relied heavily on the study of two dimensional generating
functions, authors such as Knessl and Morrison [10] study
the asymptotics of the coupled processor in heavy traffic.
They are able to show that in the heavy traffic regime, one
can compute performance measures like the mean and the
steady state distribution by studying an elliptic partial dif-
ferential equation. Moreover, using the singular perturbation
methods, Knessl [11] is able to derive asymptotic formulas
for first passage times of the busy period of each queue. How-
ever, the study of these systems has been limited to constant
rate dynamics and has not included the possibility that jobs
might abandon the queue if their job is not completed in a
satisfactory amount of time.

In this paper, we attempt to study the dynamics of the cou-
pled processor with the new features of time varying arrival
rates and the possibility of jobs abandoning. The motivation
for analyzing these important features is that they are often
neglected in the literature since they often make estimating
the queueing behavior intractable. Even without these new
features, coupled processor queueing models are very diffi-
cult to analyze, thus we must find a method that can tackle
these additional complex features. In this paper, we specifi-
cally choose to analyze the tandemmodel thatwas considered
inLeeuwaarden andResing [13].However, ourmethod easily
extends to other Markovian models such as the one consid-
ered by Wright [27], which considers two parallel M/M/1
queues with unique arrival rates instead of a tandem model.

Contrary to the current literature that uses generating
functions, we cannot use this tool because of the time vary-
ing arrival process. To this end, we exploit the functional
Kolmogorov forward equations of the Markovian coupled
processor. The functional forward equations describe the
time derivative of functions of the queue length processes.
The main difficulty of using the functional forward equa-
tions is that they are not a closed system because of the
reflection at zero and the boundary conditions of the cou-
pled system. Since the forward equations are not a closed
dynamical system, this implies that we need to understand
the a priori distribution of the queue length process in order
to compute the time derivative of various functions of the
queue length processes. In order to combat this difficulty, we
propose to approximate the distribution of the queue length
process with a two dimensional Gaussian surrogate distrib-
ution. This reduces our estimation of the mean and variance
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of the queue length process to computing expectations and
covariance terms with respect to a two dimensional Gaussian
measure. Although many of the resulting expectations and
covariance terms can be written in terms of an infinite series
of Hermite polynomials, we will show that using the first
two or three terms is sufficient for our approximation of the
functional forward equations.

1.3 Contributions

In analyzing this model, we make the following key contri-
butions:

• We are the first to analyze this model with the added fea-
tures of time varying arrival rates and the possibility of
abandonment, which are important features of proces-
sors.

• Weshow that by using polynomial chaos expansionswith
Hermite basis functions,we are able to estimate themean,
variance, and probability of emptiness for our time vary-
ing coupled queueing process.

• Develop a numerical method that only requires the solu-
tion of five differential equations for estimating the most
important performance measures.

1.4 Organization of the paper

The rest of the paper is organized as follows. Section 2
describes the queueingmodel, its sample path representation,
and its associated Kolmogorov functional forward equations.
In Sect. 3, we give a motivation for using the Hermite poly-
nomial expansion for the queue length process and we show
how the functional forward equations can be used to construct
Hermite polynomial approximations (DMAandGVA) for the
mean, variance, and probability that each queue is empty.We
also give a representative numerical example for the paper in
this section. In Sec. 4, we conclude and give final remarks.
Lastly, we compute all our expectations and covariances in
Sect. 5 or the Appendix.

2 Stochastic analysis of the coupled processor

2.1 Sample path construction of queueing process via
poisson random measures

In this section, we define and characterize the stochastic
queueing process under consideration. Using Poisson ran-
dom measures to construct the sample paths of the queueing
process, similar to the work of Mandelbaum et al. [14],
we can show that the coupled processor queueing system
{Q(t)|t ≥ 0} ≡ (Q1(t), Q2(t)) can be represented by the
following stochastic integral equations:

Q1(t) = Q1(0) + Π1

(∫ t

0
λ(s)ds

)

−Π2

(∫ t

0
μ1 · {

Q1 > 0
} · {

Q2 > 0
}
ds

)
(2.1)

−Π3

(∫ t

0
(μ1 + μ2) · {

Q1 > 0
} · {

Q2 ≤ 0
}
ds

)

−Π4

(∫ t

0
β1 · Q1(s)ds

)
(2.2)

Q2(t) = Q2(0) + Π2

(∫ t

0
μ1 · {

Q1 > 0
} · {

Q2 > 0
}
ds

)

(2.3)

+Π3

(∫ t

0
(μ1 + μ2) · {

Q1 > 0
} · {

Q2 ≤ 0
}
ds

)

−Π5

(∫ t

0
β2 · Q2(s)ds

)
(2.4)

−Π6

(∫ t

0
μ2 · {

Q1 > 0
} · {Q2 > 0}ds

)
(2.5)

−Π7

(∫ t

0
(μ1 + μ2) · {

Q1 ≤ 0
} · {

Q2 > 0
}
ds

)

(2.6)

where each (�i ) ≡ {(�i )|t ≥ 0} are i.i.d. standard (rate
1) Poisson processes. Each of the processes (�i ) contain
probabilistic information about the queueing process. Pois-
son randommeasureswith intensity function g(t) are defined
by two important properties. The first property is that the
number of arrivals in non-overlapping intervals are statisti-
cally independent. The second property is that the number of
arrivals in an interval (s, t] follows the Poisson distribution
i.e.

P (A(s, t] = n) =
(∫ t

s g(u)du
)n

n! exp

(
−

∫ t

s
g(u)du

)

(2.7)

for all positive integersn.However, anotherway to viewPois-
son random measures is through the method of time change.
For instance a deterministic time change for the process �1

transforms it into a non-homogeneousPoisson arrival process
with rate λ(t) that counts the number of customer arrivals in
the interval (0,T]. A random time change for �2 yields a
process that counts the number of service departures in the
interval (0,T] from Q1 to Q2 when both queues are non-
empty. A random time change for �3 counts the number
of service departures in the interval (0,T] from Q1 to Q2

when the first queue is non-empty, but the second queue is
empty. A random time change for �4 counts the number
of abandonment in the interval (0,T] from Q1. A random
time change for �5 counts the number of abandonments
in the interval (0,T] from Q2. A random time change for

123



826 J. Pender

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Time

S
im

ul
at

ed
 M

ea
n 

Q
ue

ue
 L

en
gt

hs
Mean−Sim−Q

1

Mean−Sim−Q
2

0 5 10 15 20 25 30 35 40
−5

0

5

10

15

20

25

30

Time

S
im

ul
at

ed
 V

ar
ia

nc
e 

an
d 

C
ov

ar
ia

nc
e

Var−Sim−Q
1

Var−Sim−Q
2

CoVar−Sim

Fig. 1 Simulated mean of both queues (Left). Simulated variance and covariance of both queues (Right)

�6 counts the number of service departures in the interval
(0,T] from Q2 when both queues are non-empty. Lastly, a
random time change for �7 counts the number of service
departures in the interval (0,T] from Q2 while the first queue
is empty.

There is one important observation to make about the
sample path construction of the queue length processes.
The rate functions of the stochastic representation are not
Lipschitz continuous. This is one of many reasons that
precludes us from applying the standard fluid and dif-
fusion limit theorem results of Mandelbaum et al. [14].
Thus, there are currently no fluid and diffusion limit the-
orems that have been proved for this particular process.
Thus, our approach to derive closed form approximations
for our queueing process, will be to use the functional
forward equations for the queue length process and con-
struct a surrogate distribution to close the forward equa-
tions.

To get a better understanding of the coupled processor,
we simulate the queueing process. For the example that we
will consider throughout the paper, we assume that the arrival
rate is 20 + 10 · sin(t), the service rate for the first queue is
μ1 = 10, the service rate for the second queue is μ2 = 5,
and the abandonment rates for each queue is β1 = β2 = 1.
We also simulate the system over the time interval of (0,40],
with a time step of �t = .001 for 10,000 sample paths.

On the left of Fig. 1 we simulate the mean of both queues.
Due to the time varying arrival rate, we see that the dynamics
of the mean queue length process is also time varying. On
the right of Fig. 1, we simulate the variance and covariance
of both queues. Similar to the mean queue length, the vari-
ance and covariance are also time varying functions of time.
One other observation of the right of Fig. 1, we see that the
covariance peaks when the queue length of the first and sec-

ond queue are minimal. When observing Fig. 2, this suggests
that the covariance of the coupled processor is larger when
the probability that the queues are coupled is larger. This is
behavior that one cannot observe in the stationary case, when
the mean queue length reaches a steady state and does not
vary over time.

2.2 Forward equations for the Tandem model

We start this section with a derivation of the functional Kol-
mogorov forward equations for our tandem queueing model.
We will then use the functional version of these equations
to derive our approximation for the mean, variance, and
probability of emptiness for our coupled processor queueing
model. First we let f be any integrable, real valued function
on the two dimensional state space of our tandem queueing
model, then we have

•
E[ f (Q1, Q2)]

= λ1(t) · E [ f (Q1 + 1, Q2) − f (Q1, Q2)]

+ μ1 · E [( f (Q1 − 1, Q2) − f (Q1, Q2

+ 1)) · {Q1 ≥ 0} · {Q2 ≥ 0}]
+ μ2 · E [( f (Q1, Q2 − 1) − f (Q1, Q2))

· {Q1 ≥ 0} · {Q2 ≥ 0}]
+ (μ1 + μ2) · E [( f (Q1 − 1, Q2 + 1)

− f (Q1, Q2)) · {Q1 ≥ 0} · {Q2 ≤ 0}]
+ (μ1 + μ2) · E [( f (Q1, Q2 − 1)

− f (Q1, Q2)) · {Q1 ≤ 0} · {Q2 ≥ 0}]
+ β1 · E [( f (Q1−1, Q2)− f (Q1, Q2)) · Q1]

+ β2 · E [( f (Q1, Q2−1)− f (Q1, Q2)) · Q2]
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Fig. 2 Simulated probability of emptiness of queue 1 (Left). Simulated probability of emptiness of queue 2 (Right)

where
•
E[ f (Q1, Q2)] is defined as

•
E[ f (Q1, Q2)] ≡ d

dt
E[ f (Q1, Q2)], (2.8)

which is the time derivative of the expectation of the function
f (Q1, Q2). A rigorous derivation of these equations can be
found in Engblom et al. [8] in the one-dimensional setting
and inMassey and Pender [15–17] for the multi-dimensional
setting.

If we focus instead on the marginal distribution of the
forward equations for Q1 i.e. f (x, y) = g(x), we have the
following functional forward equations for Q1

•
E[g(Q1)] = λ1(t) · E [g(Q1 + 1) − g(Q1)]

+ μ1 · E [(g(Q1 − 1) − g(Q1)) · {Q1 ≥ 0}
· {Q2 ≥ 0}]
+ (μ1 + μ2) · E [(g(Q1 − 1)

− g(Q1)) · {Q1 ≥ 0} · {Q2 ≤ 0}]
+ β1 · E [(g(Q1 − 1) − g(Q1)) · Q1] .

Similarly, if we focus instead on the marginal distribution
for the forward equations for Q2 i.e. f (x, y) = w(y), then
we have the following functional forward equations for Q2

•
E[w(Q2)] = μ2 · E [(w(Q2 − 1) − w(Q2))

· {Q1 ≥ 0} · {Q2 ≥ 0}]
+ (μ1 + μ2) · E [(w(Q2 − 1)

− w(Q2)) · {Q1 ≤ 0} · {Q2 ≥ 0}]
+ β2 · E [(w(Q2 − 1) − w(, Q2)) · Q2] .

If we restrict to understanding the time dependent behav-
ior for the mean of our queue length processes, then we
have the following equations for the time derivatives of
E[Q1], E[Q2]
•
E[Q1] = λ1(t) − μ1 · E [{Q1 > 0} · {Q2 > 0}]

− (μ1 + μ2) · E [{Q1 > 0} · {Q2 ≤ 0}]
− β1 · E[Q1]

•
E[Q2] = μ1 · E [{Q1 > 0} · {Q2 > 0}] + (μ1 + μ2)

· E [{Q1 > 0} · {Q2 ≤ 0}]
− μ2 · E [{Q1 > 0} · {Q2 > 0}]
− (μ1 + μ2) · E [{Q1 ≤ 0} · {Q2 > 0}]
− β2 · E[Q2]

Moreover, for the variances and covariance i.e. Var[Q1],
Var[Q2],Cov[Q1, Q2] we have that

•
Var[Q1] = λ1(t) + μ1 · E [{Q1 > 0} · {Q2 > 0}]

+ (μ1 + μ2) · E [{Q1 > 0} · {Q2 ≤ 0}]
+ β1 · E[Q1]
−2 · μ1 · Cov [Q1, {Q1 > 0} · {Q2 > 0}]
−2 · (μ1 + μ2) · Cov [Q1, {Q1 > 0}
· {Q2 ≤ 0}] − 2 · β1 · Cov [Q1, Q1]

•
Var[Q2] = μ1 · E [{Q1 > 0} · {Q2 > 0}] + (μ1 + μ2)

· E [{Q1 > 0} · {Q2 ≤ 0}]
+ μ2 · E [{Q1 > 0} · {Q2 > 0}] + (μ1 + μ2)

· E [{Q1 ≤ 0} · {Q2 > 0}] + β2 · E[Q2]
+ 2 · μ1 · Cov [Q2, {Q1 > 0} · {Q2 > 0}]
− 2 · μ2 · Cov [Q2, {Q1 > 0} · {Q2 > 0}]

123



828 J. Pender

+ 2 · (μ1 + μ2) · Cov [Q2, {Q1 ≤ 0}
· {Q2 > 0}]
− 2 · (μ1 + μ2) · Cov [Q2, {Q1 ≤ 0}
· {Q2 > 0}] − 2 · β2 · Cov [Q2, Q2]

•
Cov[Q1, Q2]

=−μ1 ·E [{Q1>0}·{Q2>0}]−(μ1+μ2)

·E [{Q1 > 0} · {Q2 ≤ 0}]
+ μ1 · Cov [Q1, {Q1 > 0} · {Q2 > 0}]
− μ1 · Cov [Q2, {Q1 > 0} · {Q2 > 0}]
− μ2 · Cov [Q1, {Q1 > 0} · {Q2 > 0}]
− (μ1 + μ2) · Cov [Q1, {Q1 > 0} · {Q2 ≤ 0}]
− (μ1 + μ2) · Cov [Q2, {Q1 > 0} · {Q2 ≤ 0}]
− (μ1 + μ2) · Cov [Q1, {Q1 ≤ 0} · {Q2 > 0}]
− (β1 + β2) · Cov [Q1, Q2] .

3 Polynomial chaos expansions

In this section, we provide some background information on
the expansionmethods that follow. Ourmethod is inspired by
the well known Cameron-Martin theorem [6] which shows
that any square integrable random variable X can be repre-
sented by a series expansion as follows:

X (ξ) =
∞∑
j=0

q j · � j (ξ) (3.1)

where q j are coefficients that are to be determined and the
� j (ξ) are orthogonal functions of the ξ random variables,
which form a complete orthonormal polynomial basis. In fact
the orthogonal functions � j (ξ) satisfy the following proper-
ties

�0(ξ) = 1

E[� j (ξ)] = 0, for j ≥ 1

E[� j (ξ) · �k(ξ)] = 0, for j �= k

Thus, the Cameron-Martin theorem [6] implies that any
arbitrary random variable X (ξ), which is square integrable,
can be represented by an infinite number of random variables
with a particular distribution. To give the reader more insight
into how this works we will give a simple explanation below.
Let X be a random variable with cdf FX . Let us also define
U as a uniform random variable on [0,1]. We have that as
long as the distribution of X is continuous that its cdf will be
invertible i.e.

X = F−1
X (U ). (3.2)

Moreover, if Z is an arbitrary continuous random variable
with cdf Fz , then we have that

X = F−1
X (Fz(Z)). (3.3)

Thus, we can represent random variables in term of other
random variables that are easier to manipulate. In this paper
we choose to use the Hermite polynomials and Gaussian dis-
tribution since they are easy to manipulate and are used to
perform difficult calculations. This type of chaos expansion
has been considered by many authors in applied mathemat-
ics such as Ogura [19], Askey and Wilson [1], and Xiu and
Karniadakis [28]. Unfortunately a perfect approximation of
the random variable X (ξ) might require an infinite number
of basis elements. However, one way to accurately approx-
imate the random variable X (ξ) is to truncate the infinite
series expansion at a finite order. Approximating X (ξ) with
polynomials with degree less than or equal to n results in the
following approximation for X (ξ)

X (ξ) ≈
n∑
j=0

q j · � j (ξ). (3.4)

Now to extend the polynomial chaos expansion from ran-
dom variables to stochastic processes, we need to make the
coefficients q j functions of time i.e.

X (t, ξ) ≈
n∑
j=0

q j (t) · � j (ξ). (3.5)

In the remainder of the paper, we will focus our expansion
efforts on the Hermite polynomials, which are orthogonal
with respect to theGaussianmeasure. Thismeans thatwewill
let � j (ξ) = Hj (ξ) where ξ is a standard Gaussian random
variable and Hj (·) is the j th Hermite polynomial. We will
show how to use the Hermite polynomial chaos expansion
to approximate the dynamics of the coupled processor and
many of its performance measures.

3.1 Motivation for Hermite expansion

Suppose that the coupled processor Q = (Q1, Q2) is a
square integrable stochastic process Q on a bounded time
interval [0,T]. The fact that the coupled processor is square
integrable easily follows from the fact that the coupled
processor is bounded above by the initial number of jobs
and the nonstationary arrival rate, which we assume to have
integrable rates. Since Q is square integrable, we can write
Q as a weighted sum of orthogonal Hermite polynomials i.e.

Q =
∞∑
n=0

qn · Hn(Y ). (3.6)
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An analysis of nonstationary coupled queues 829

The series representation converges in the Hilbert space
L2[0,∞) if and only if

‖Q‖2L2 =
∞∑
n=0

n! · ‖qn‖2 < ∞. (3.7)

One motivating reason why we use Hermite polynomi-
als is that they are orthogonal with respect to the Gaussian
measure, which is infinitely differentiable. Since many of
the functions that appear in queueing theory are discontinu-
ous or not differentiable (especially indicator functions), it is
clear that integrating these functions or taking expectations
with respect to the Gaussian measure makes the subsequent
functions smooth.

Since our queue length process is square integrable by the
standard Markovian service network assumptions, we have
hope of applying the Hermite polynomial expansion. How-
ever, in order to avoid the infinite set of Hermite polynomials
needed to approximate our functionswith arbitrary precision,
we choose to truncate the series expansion at a finite num-
ber of terms. This truncation is analogous to projecting our
stochastic process onto a finite dimensional space of polyno-
mial basis elements. For the first and second truncations, we
respectively get the following approximations

Q ≈ qα
0 · H0(Y )

Q ≈ qα
0 · H0(Y ) + qα

1 · H1(Y ).

These truncated Hermite series expansions motivate the
following approximations for our stochastic queue length
process.

3.2 First order: deterministic mean approximation
(DMA)

Like in the work ofMassey and Pender [17] and Pender [20],
our first approximation will use the first Hermite polynomial
for each queue length process as an approximate distribution
of the queueing process. We call this theDeterministic Mean
Approximation since we assume {q ≡ (q1(t), q2(t))|t ≥ 0}
is a deterministic process that approximates the queueing
process.

Theorem 3.1 If we let (q1, q2) replace (Q1, Q2) in the Kol-
mogorov forward equation for the distribution of Q, then q
solves the resulting autonomous, two-dimensional, dynami-
cal system

•
q1 = λ1 − μ1 · {q1 > 0} · {q2 > 0} − (μ1 + μ2)

· {q1 > 0} · {q2 ≤ 0} − β1 · q1 (3.8)
•
q2 = μ1 · {q1 > 0} · {q2 > 0} + (μ1 + μ2)

· {q1 > 0} · {q2 ≤ 0}

− μ2 · {q1 > 0} · {q2 > 0}
− (μ1 + μ2) · {q1 ≤ 0} · {q2 > 0} − β2 · q2. (3.9)

Proof For the first queue length process we have that

•
E[Q1] = λ1(t) − μ1 · E [{Q1 > 0} · {Q2 > 0}]

− (μ1 + μ2) · E [{Q1 > 0} · {Q2 ≤ 0}]
− β1 · E[Q1]

•
E[q1] = λ1(t) − μ1 · E [{q1 > 0} · {q2 > 0}]

− (μ1 + μ2) · E [{q1 > 0} · {q2 ≤ 0}]
− β1 · E[q1]

•
q1 = λ1(t) − μ1 · {q1 > 0} · {q2 > 0}

−(μ1 + μ2) · {q1 > 0} · {q2 ≤ 0} − β1 · q1

and for the second queue length process we have that

•
E[Q2] = μ1 · E [{Q1 > 0} · {Q2 > 0}] + (μ1 + μ2)

· E [{Q1 > 0} · {Q2 ≤ 0}]
− μ2 · E [{Q1 > 0} · {Q2 > 0}] − (μ1 + μ2)

· E [{Q1 ≤ 0} · {Q2 > 0}] − β2 · E[Q2]
•
E[q2] = μ1 · E [{q1 > 0} · {q2 > 0}] + (μ1 + μ2)

· E [{q1 > 0} · {q2 ≤ 0}]
− μ2 · E [{q1 > 0} · {q2 > 0}] − (μ1 + μ2)

· E [{q1 ≤ 0} · {q2 > 0}] − β2 · E[q2]
•
q2 = μ1 · {q1 > 0} · {q2 > 0} + (μ1 + μ2) · {q1 > 0}

· {q2 ≤ 0}
− μ2 · {q1 > 0} · {q2 > 0} − (μ1 + μ2) · {q1 ≤ 0}
· {q2 > 0} − β2 · q2.

This completes the proof. 	

It is clear that the DMA yields the same equation as one

would derive from a heuristic fluid limit argument. Thus, we
can view DMA as an one dimensional projection onto the
deterministic functions q1(t), q2(t). In Fig. 3, we see that the
DMA is doing a good job of approximating the mean queue
length of the first queue. However, we see that the DMAdoes
not do a good job of approximating the mean queue length
of the second queue. This is because although the first queue
has a time varying arrival rate, the arrival rate of the second
queue is not time varying since it depends on the service rate
of the first queue.Moreover, the service rate of the first queue
does not change because the queue length of the first queue is
always positive and, it would only change if the queue length
were zero.
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Fig. 3 Simulated mean and variance (Left). Simulated Skewness and Kurtosis (Right)

Now that we see that the mean queue length for the sec-
ond queue is not well estimated by the DMA, this leads us to
explore further polynomial expansions for the queue length
process. Since DMA is a deterministic and non-random
approximation for the mean queue length, DMA implicitly
assumes that the variance and higher cumulant moments are
equal to zero. Thus, if we want to appropriately model other
moments such as the variance and covariance,wemust add an
additional term to the Hermite polynomial queueing expan-
sion. The additional polynomials will add some randomness
to the queue length approximation and not implicitly assume
that the variance and covariance of the queue length processes
are zero.

3.3 Second order: Gaussian variance approximation
(GVA)

In this section we extend the DMA by adding an additional
polynomial to the approximating queue length process. By
adding an additional polynomial,we approximate the dynam-
ics of the mean and variance of Q by a random process
Q ≡ {Q(t)|t ≥ 0} such that

Q
d= N (q, 
) (3.10)

where

q =
(
q1
q2

)
and 
 =

(
v1 v3
v3 v2

)
(3.11)

for all t ≥ 0, where {q(t),
(t)|t ≥ 0} is some two-
dimensional dynamical system where the 
(t) process is
always positive definite. We call this second order approx-
imation the Gaussian Variance Approximation. Now if we

substitute our approximate distribution of the queueing
process, Eq. 3.11, into the functional forward equations we
obtain our second approximation and second theorem.

Theorem 3.2 If we assume that the surrogate distribution
for the queueing processes follows a bivariate normal distri-
bution i.e.

(
Q1

Q2

)
≈

(
q1 + √

v1 · X
q2 + √

v2 · (X · cos θ + Y · sin θ)

)

where X,Y are independent standardGaussian randomvari-
ables, then we have

•
q1 = λ1(t) − μ1 · E [{X > χ1} · {X · cos θ

+ Y · sin θ > χ2}]
− (μ1 + μ2) · E [{X > χ1} · {X · cos θ

+ Y · sin θ ≤ χ2}] − β1 · q1
•
q2 = μ1 · E [{X > χ1} · {X · cos θ + Y · sin θ > χ2}]

+ (μ1 + μ2) · E [{X > χ1} · {X · cos θ

+ Y · sin θ ≤ χ2}]
− μ2 · E [{X > χ1} · {X · cos θ + Y · sin θ > χ2}]
− (μ1 + μ2) · E [{X ≤ χ1} · {X · cos θ

+ Y · sin θ > χ2}] − β2 · E[Q2]

for the mean queue length and

•
v1 = λ1(t)+μ1 ·E [{X >χ1} ·{X · cos θ+Y · sin θ > χ2}]

+ (μ1 + μ2) · E [{X > χ1} · {X · cos θ

+ Y · sin θ ≤ χ2}] + β1 · E[Q1]
− 2 · μ1 · √

v1 · Cov [X, {X > χ1} · {X · cos θ

+ Y · sin θ > χ2}]
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Fig. 4 Comparison of simulated, DMA, and GVA means of Q1 (Left). Comparison of Simulated, DMA, and GVA Means of Q2 (Right)

− 2 · (μ1 + μ2) · √
v1 · Cov [X, {X > χ1}

· {X · cos θ + Y · sin θ ≤ χ2}]
− 2 · β1 · v1

•
v2 = μ1 · E [{X > χ1} · {X · cos θ + Y · sin θ > χ2}]

+μ1+μ2) · E [{X >χ1} · {X ·cos θ+Y · sin θ ≤χ2}]
+ μ2 · E [{X > χ1} · {X · cos θ + Y · sin θ > χ2}]
+ (μ1 + μ2) · E [{X ≤ χ1} · {X · cos θ

+ Y · sin θ > χ2}] + β2 · q2
−2 · μ2 · √

v2 · Cov [X · cos θ + Y · sin θ, {X > χ1}
· {X · cos θ + Y · sin θ > χ2}]
− 2 · (μ1 + μ2) · √

v2 · Cov [X · cos θ + Y

· sin θ, {X ≤ χ1} · {X · cos θ + Y · sin θ > χ2}]
− 2 · β2 · v2

•
v3 = −μ1 · √

v2 · Cov [X · cos θ + Y · sin θ, {X > χ1}
· {X · cos θ + Y · sin θ > χ2}]
− μ2 · √

v1 · Cov [X, {X > χ1} · {X · cos θ

+ Y · sin θ > χ2}]
− (μ1 + μ2) · √

v2 · Cov [X · cos θ + Y

· sin θ, {X > χ1} · {X · cos θ + Y · sin θ > χ2}]
− (μ1 + μ2) · √

v1 · Cov [X, {X ≤ χ1} · {X
· cos θ + Y · sin θ > χ2}]
− (β1 + β2) · v3

for the variance and covariance of the queue length process,
where χ1 = −q1√

v1
and χ2 = −q2√

v2
.

Proof In order to compute the mean, variance, and covari-
ance of the queue length processes, then we need to compute

closed form expressions for the following expectation and
covariance terms

E[{Q1 > 0}]
E[{Q2 > 0}]
E[{Q1 > 0} · {Q2 > 0}]
E[{Q1 > 0} · {Q2 ≤ 0}]
E[{Q1 ≤ 0} · {Q2 > 0}]
Cov [Q1, {Q1 > 0} · {Q2 > 0}]
Cov [Q1, {Q1 > 0} · {Q2 ≤ 0}]
Cov [Q1, {Q1 ≤ 0} · {Q2 > 0}]
Cov [Q2, {Q1 > 0} · {Q2 > 0}]
Cov [Q2, {Q1 > 0} · {Q2 ≤ 0}]
Cov [Q2, {Q1 ≤ 0} · {Q2 > 0}]

We compute these expectations and covariance terms in
the Appendix. 	


Remark 3.3 We should mention that in our representation of
the queue length in terms of trigonometric functions like

(
Q1

Q2

)
≈

(
q1 + √

v1 · X
q2 + √

v2 · (X · cos θ + Y · sin θ)

)

should not confuse readers as it can be easily represented as

(
Q1

Q2

)
≈

(
q1 + √

v1 · X
q2 + √

v2 ·
(
X · ρ + Y · √

1 − ρ2
)

)

where ρ = cos θ and it is understood that the correlation
between the queues is ρ.
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Fig. 5 Comparison of simulated and GVA variances of Q1 (Left). Comparison of simulated and GVA variances of Q2 (Right)

On the left of Fig. 4, we compare the approximations
from DMA and GVA for the mean queue length of the
first queue. We see that the GVA approximation does the
best at estimating the mean dynamics of the first queue-
ing process. This is also true on the right of Fig. 4 where
the approximations of DMA and GVA are displayed. We
also see that GVA is doing a better job of reproducing the
mean dynamics of the simulated behavior. In fact, on the
right of Fig. 4 we see that the variance helps estimate the
true dynamics of the mean queue length since it includes
information about the probabilistic nature of the stochastic
queue length process. On the left of Fig. 5, we see that the
GVA is doing a good job of approximating the variance of
the queue length of the first station. Moreover, we see that
the GVA also does a good job of approximating the vari-
ance of the queue length of the second station. Lastly, we
see in Fig. 6 that the GVA does a good job of estimating the
covariance of the two queueing stations. Similar to DMA,
we can view GVA as a five dimensional projection of the two
stations.

3.4 Probability of emptiness

In addition to approximating the mean and variance of the
queue length processes, we can also derive an approximation
for the probability that each queue is empty.

Proposition 3.4 Under the assumption of the GVA, we have
the following approximation for the probability that each
queue is empty

P (Q1 = 0) = 1 − P (Q1 > 0) = �(χ1) (3.12)

P (Q2 = 0) = 1 − P (Q2 > 0) = �(χ2) (3.13)
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Fig. 6 Comparison of simulated and GVA covariances of Q1 and Q2

Proof

P (Q1 = 0) = 1 − E[{Q1 > 0}]
= E[{X > χ1}]
= �(χ1)

P (Q2 = 0) = 1 − E[{Q2 > 0}]
= E[{X · cos θ + Y · sin θ > χ2}]
= �(χ2) 	


3.5 Additional numerical example

To get a better understanding of the coupled processor, we
simulate the queueing process. For the example that we will
consider throughout the paper, we assume that the arrival
rate is 20 + 10 · sin(t), the service rate for the first queue is
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Fig. 7 Simulated probability of emptiness vs. GVA of queue 1 (Left). Simulated probability of emptiness vs. GVA of queue 2 (Right)

μ1 = 10, the service rate for the second queue is μ2 = 5,
and the abandonment rates for each queue is β1 = β2 = 1.
We also simulate the system over the time interval of (0,40],
with a time step of �t = .001 for 10,000 sample paths.

4 Conclusions and future work

Wepropose a newmethod for approximating the timevarying
dynamics of a coupled processor tandem queueing system.
Unlike much of the literature, we consider the model with
a time varying arrival rate and the possibility of abandon-
ment. Our method is not only useful for computing accurate
estimates of the mean and variance, but also the probability
that each queue is empty. To derive these approximations we
give closed form approximations for the calculation of two
dimensional Gaussian integrals.

We should also mention that unlike generating functions
in the two dimensional case, our method extends beyond the
two dimensional example we propose in the paper. Using
our method, we can extend our results to the case of a n-
dimensional coupled processor and also when the arrival
processes are of batch type. The functional forward equa-
tions for this n-dimensional setting are

•
E[ f (Q)] =

n∑
j=1

λ j (t) · E [
f (Q + e j ) − f (Q)

]

+
2n∑
j=1

E
[(

f (Q − g j (e)) − f (Q)
) · Pj (Q)

]

+
n∑
j=1

β j · E [(
f (Q − e j ) − f (Q)

) · Q j
]

where Pj (Q) represents the partition function that divides
up the service rates of all the queues that are non-zero.
All of the complexity is hidden in the function Pj (Q)

since it incorporates when the queueing processes are
empty and at what rate each queue should be served
at.

However, this would require the computation of n-
dimensional Gaussian integrals, which are more difficult and
we do not consider this extension here. Perhaps an indepen-
dence assumption like in the propagation of chaos or thework
of Pender [23] might yield some simple approximations for
the n-dimensional case. Another potential method that could
be used is the sampling method of Pender [20–24]. More-
over, our approach can be extended to the model of coupled
processors considered by Knessl and Morrison [10] where
the two queues are fed from two different arrival streams and
work in parallel instead of in a tandem fashion. This exten-
sion, like the priority extension of Johan et al. case requires
no new calculations since the forward equations are quite
similar.

Lastly, we intend to apply our polynomial chaos tech-
nique to the work of Boxma et al.[5] where they study
the workload process with non-exponential service distri-
butions. This is actually more realistic since the workload
process is not a discrete process and has a continuous den-
sity since it is a spectrally positive Levy process. This case
also might benefit from methods in Pender [17,20–23] as
well (Fig. 7).

Acknowledgments This work is partially supported by a Ford Foun-
dation Fellowship and Cornell University.
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Fig. 8 Simulated mean vs. GVA mean of queue 1 (Left). Simulated mean vs. GVA mean of queue 2 (Right)

5 Appendix

5.1 Hermite polynomials

Lemma 5.1 (Stein [26]). The randomvariable X isGaussian
(0, 1) if and only if

E [X · f (X)] = E

[
d

dX
f (X)

]
, (5.1)

for all generalized functions f . Moreover, we also have that

E [hn(X) · f (X)] = E

[
dn

dXn
f (X)

]
, (5.2)

where hn(X) is the nth Hermite polynomial.

Let X and Y be two i.i.d Gaussian(0,1) random variables
(Fig. 8).

Proposition 5.2 Any L2 function canbewrittenas an infinite
sum of Hermite polynomials of X, i.e.

f (X, Y )
L2=

∞∑
m=0

∞∑
n=0

1

m!n! E
[

∂n+m f

∂m X∂nY
(X, Y )

]

· hm(X) · hn(Y ),

E[ f (X, Y ) · g(X, Y )] =
∞∑

m=0

∞∑
n=0

1

m!n! E
[

∂n+m f

∂m X∂nY
(X, Y )

]

· E
[

∂n+mg

∂mX∂nY
(X, Y )

]

and

Cov[ f (X), g(X,Y )] =
∞∑

m=1

1

m! E
[

∂m f

∂mX
(X)

]

· E
[

∂mg

∂mX
(X,Y )

]

5.2 Calculation of expectation and covariance terms

We define ϕ and � to be the density and the cumulative
distribution functions, for X respectively, where

ϕ(x) ≡ 1√
2π

e−x2/2, �(x) ≡
∫ x

−∞
ϕ(y) dy, and

�(x) ≡ 1 − �(x) =
∫ ∞

x
ϕ(y) dy. (5.3)

We begin with some of the simpler expectation terms that
only involve the evaluation of the Gaussian tail cdf.

E[{X > χ1}] = P (X > χ1) = �(χ1)

E[{X · cos θ + Y · sin θ > χ2}] = P (Z > χ2) = �(χ2)

Nowwe use the previous proposition to derive the follow-
ing expectations. Using the L2 expansion of the function, we
get an infinite series representation for the first line. To move
from the second to the third line, we use the fact that the func-
tion {Q1 > 0} does not depend on the function Y . Lastly, we
use the Hermite polynomial generalization of Stein’s lemma
(Fig. 9).

E [{Q1 > 0} · {Q2 > 0}]
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Fig. 9 Simulated variance vs. GVA variance of queue 1 (Left). Simulated variance vs. GVA variance of queue 2 (Right)

=
∞∑

m=0

∞∑
n=0

1

m!n! E
[

∂n+m

∂mX∂nY
{Q1 > 0}

]

· E
[

∂n+m

∂mX∂nY
{Q2 > 0}

]

=
∞∑

m=0

1

m! E
[

∂m

∂mX
{Q1 > 0}

]
· E

[
∂m

∂mX
{Q2 > 0}

]

(since Q1 does not depend on Y)

= �(χ1) · �(χ2) + φ(χ1) · φ(χ2) ·
∞∑

m=1

1

m!
· hm−1(χ1) · hm−1(χ2) · cosm θ.

The following two expectations can be calculated easily
using the previous calculations.

E [{Q1 > 0} · {Q2 ≤ 0}]
= E [{Q1 > 0}] − E [{Q1 > 0} · {Q2 > 0}]
= �(χ1) − �(χ1) · �(χ2) − φ(χ1) · φ(χ2)

·
∞∑

m=1

1

m! · hm−1(χ1) · hm−1(χ2) · cosm θ

E [{Q1 ≤ 0} · {Q2 > 0}]
= E [{Q2 > 0}] − E [{Q1 > 0} · {Q2 > 0}]
= �(χ2) − �(χ1) · �(χ2) − φ(χ1) · φ(χ2)

·
∞∑

m=1

1

m! · hm−1(χ1) · hm−1(χ2) · cosm θ

Nowwe begin the calculation of the covariance termswith
respect to the first queue length. From the first line to the
second we use the property that covariances are invariant
to constants. Then, we use the Hermite polynomial expan-

sion property and the Hermite polynomial generalization of
Stein’s lemma once again (Fig. 10).

Cov [Q1, {Q1 > 0} · {Q2 > 0}]
= Cov

[
q1 + √

v1 · X, {Q1 > 0} · {Q2 > 0}]
= √

v1 · Cov [X, {Q1 > 0} · {Q2 > 0}]
= √

v1 · E [X · {Q1 > 0} · {Q2 > 0}]

= √
v1 ·

∞∑
m=0

∞∑
n=0

1

m!n! E
[

∂n+m

∂mX∂nY
X · {Q1 > 0}

]

· E
[

∂n+m

∂mX∂nY
{Q2 > 0}

]

= √
v1 ·

∞∑
m=0

1

m! E
[

∂m

∂mX
X · {Q1 > 0}

]

· E
[

∂m

∂mX
{Q2 > 0}

]

= √
v1 ·

∞∑
m=0

1

m! E
[

∂m

∂mX
X · {X > χ1}

]

· E
[

∂m

∂mX
{X · cos θ + Y · sin θ > χ2}

]

= √
v1 ·

∞∑
m=0

1

m! E [hm(X) · X · {X > χ1}]

· E
[

∂m

∂mX
{X · cos θ + Y · sin θ > χ2}

]

= √
v1 ·

∞∑
m=0

1

m! E
[
(hm+1(X) + m · hm−1(X))

· {X > χ1}] · E
[

∂m

∂mX
{X · cos θ + Y · sin θ > χ2}

]

= √
v1 · ϕ(χ1) · �(χ2) + √

v1 · (
�(χ1)
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Fig. 10 Simulated probability of emptiness of queue 1 (Left). Simulated probability of emptiness of queue 2 (Right)

+ χ1 · ϕ(χ1)) · ϕ(χ2) · cos θ

+ √
v1 ·

∞∑
m=2

1

m! ((hm(χ1) + m · hm−2(χ1)) · ϕ(χ1)·)

· E
[

∂m

∂mX
{X · cos θ + Y · sin θ > χ2}

]

= √
v1 · ϕ(χ1) · �(χ2) + √

v1 · (
�(χ1) + χ1

· ϕ(χ1)) · ϕ(χ2) · cos θ

+√
v1 · ϕ(χ1) · ϕ(χ2) ·

∞∑
m=2

1

m! (hm(χ1)

+ m · hm−2(χ1)) · hm−1(χ2) · cosm θ

For the next two covariance terms, we use the previous
covariance term in the calculation.

Cov [Q1, {Q1 > 0} · {Q2 ≤ 0}]
= Cov [Q1, {Q1 > 0} · (1 − {Q2 > 0})]
= Cov [Q1, {Q1 > 0}]−Cov [Q1, {Q1>0} · {Q2>0}]
= Cov

[√
v1 · X, {X >χ1}

]−Cov
[√

v1 · X, {X >χ1}
· {X · cos θ + Y · sin θ > χ2}]

= √
v1 · ϕ(χ1) − √

v1 · Cov [X, {X > χ1}
· {X · cos θ + Y · sin θ > χ2}]

= √
v1 · ϕ(χ1) − √

v1 · ϕ(χ1) · �(χ2)

−√
v1 · (

�(χ1) + χ1 · ϕ(χ1)
) · ϕ(χ2) · cos θ

−√
v1 · ϕ(χ1) · ϕ(χ2) ·

∞∑
m=2

1

m! (hm(χ1)

+ m · hm−2(χ1)) · hm−1(χ2) · cosm θ

= √
v1 · ϕ(χ1) · �(χ2) − √

v1 · (
�(χ1) + χ1 · ϕ(χ1)

)
· ϕ(χ2) · cos θ

−√
v1 · ϕ(χ1) · ϕ(χ2) ·

∞∑
m=2

1

m! (hm(χ1)

+ m · hm−2(χ1)) · hm−1(χ2) · cosm θ

Cov [Q1, {Q1 ≤ 0} · {Q2 > 0}]
= Cov [Q1, (1 − {Q1 > 0}) · {Q2 > 0}]
= Cov [Q1, {Q2 > 0}] − Cov [Q1, {Q1>0} · {Q2>0}]
= Cov

[√
v1 · X, {Q2 > 0}] − Cov

[√
v1 · X, {Q1 > 0}

· {Q2 > 0}]
= √

v1 · ϕ(χ2) · cos θ − √
v1 · ϕ(χ1) · �(χ2)

−√
v1 · (

�(χ1) + χ1 · ϕ(χ1)
) · ϕ(χ2) · cos θ

−√
v1 · ϕ(χ1) · ϕ(χ2) ·

∞∑
m=2

1

m! (hm(χ1)

+ m · hm−2(χ1)) · hm−1(χ2) · cosm θ

Nowwe begin the calculation of the covariance termswith
respect to the second queue length. From the first line to the
second we use the property that covariances are invariant
to constants. Then, we use the Hermite polynomial expan-
sion property and the Hermite polynomial generalization of
Stein’s lemma once again.

Cov [Q2, {Q1 > 0} · {Q2 > 0}]
= Cov

[√
v1 · X, {Q1 > 0} · {Q2 > 0}]

= √
v2 · Cov [X · cos θ + Y · sin θ, {Q1>0} · {Q2>0}]

= √
v2 · cos θ · Cov [X, {Q1 > 0} · {Q2 > 0}]

+√
v2 · sin θ · Cov [Y, {Q1 > 0} · {Q2 > 0}]

= √
v2 · cos θ · Cov [X, {Q1 > 0} · {Q2 > 0}] + √

v2

· sin θ ·
∞∑

m=0

∞∑
n=0

1

m!n! E
[

∂n+m

∂mX∂nY
Y · {Q1 > 0}

]
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·E
[

∂n+m

∂mX∂nY
{Q2 > 0}

]

= √
v2 · cos θ · Cov [X, {Q1 > 0} · {Q2 > 0}]

+√
v2 · sin θ ·

∞∑
m=0

1

m! E
[

∂1+m

∂mX∂Y
Y · {Q1 > 0}

]

· E
[

∂1+m

∂mX∂Y
{Q2 > 0}

]

= √
v2 · cos θ · Cov [X, {Q1 > 0} · {Q2 > 0}]

+√
v2 · sin θ · (�(χ1) · ϕ(χ2) · sin θ

) + √
v2

· sin θ · (ϕ(χ1) · χ2 · ϕ(χ2) · sin θ · cos θ)

+√
v2 · sin θ ·

∞∑
m=2

1

m! E
[

∂m

∂mX
{X > χ1}

]

· E
[

∂m

∂mX
δχ2(X · cos θ + Y · sin θ)

]

= √
v2 · cos θ · Cov [X, {Q1 > 0} · {Q2 > 0}]

+√
v2 · sin θ · (�(χ1) · ϕ(χ2) · sin θ

) + √
v2 · sin θ

· (ϕ(χ1) · χ2 · ϕ(χ2) · sin θ · cos θ)

+√
v2 · sin θ ·

∞∑
m=2

1

m!ϕ(χ1) · hm−1(χ1) · ϕ(χ2)

· hm(χ2) · sin θ · cosm θ

Lastly, for the next two covariance terms, we use the pre-
vious covariance term in the calculation.

Cov [Q2, {Q1 > 0} · {Q2 ≤ 0}]
= Cov [Q2, {Q1 > 0} · (1 − {Q2 > 0})]
= Cov [Q2, {Q1 > 0}] − Cov [Q2, {Q1>0} · {Q2>0}]
= √

v2 · Cov [X · cos θ + Y · sin θ, {Q1 > 0}] − √
v2

· Cov [X · cos θ + Y · sin θ, {Q1 > 0} · {Q2 > 0}]
= √

v2 · cos θ · ϕ(χ1) − √
v2 · Cov [X · cos θ

+Y · sin θ, {Q1 > 0} · {Q2 > 0}]
Cov [Q2, {Q1 ≤ 0} · {Q2 > 0}]

= Cov [Q2, (1 − {Q1 > 0}) · {Q2 > 0}]
= Cov [Q2, {Q2 > 0}] − Cov [Q2, {Q1>0} · {Q2>0}]
= √

v2 · Cov [X · cos θ + Y · sin θ, {Q2 > 0}] − √
v2

·Cov [X · cos θ + Y · sin θ, {Q1 > 0} · {Q2 > 0}]
= √

v2 · ϕ(χ2) − √
v2 · Cov [X · cos θ + Y

· sin θ, {Q1 > 0} · {Q2 > 0}]
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