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1. INTRODUCTION

Since the seminal work of Guerre, Perrigne, and Vuong (2000, GPV hereafter), the

nonparametric estimation of auction models has received enormous attention from both the

perspectives of econometric analysis and empirical applications. In this paper, we revisit

the first-price auction models and propose a novel estimation procedure for the valuation

quantile function. Our approach is appealing both computationally and theoretically. We

first construct a quantile estimator that is tuning-parameter-free and robust in the sense

that it is consistent under weaker smoothness assumptions than typically imposed in the

literature (details later). Whenever the typical smoothness assumptions are satisfied, we can

construct a trimming-free and asymptotically normal second step estimator that achieves the

optimal rate of GPV. Furthermore, our estimator explicitly incorporates the restriction of

the monotone bidding strategy and is monotone in finite samples, which is important for

empirical work but not ensured by most of the existing estimators.

To better illustrate the features of our estimator, we begin by reviewing existing approaches

in the literature. We focus on the baseline case of homogeneous auctions and will show it

can be extended and incorporate auction specific characteristics in Section 2.3. We consider

the standard GPV setup of independent private value (IPV) first price auction. Their novel

approach is to transform the first-order condition for optimal bids and express a bidder’s

value as an explicit function of the submitted bid, the Probability Density Function (PDF)

and Cumulative Distribution Function (CDF) of bids:

v = s−1(b) ≡ b +
1

I − 1
G(b)
g(b)

, (1)

where b is the bid, I is the number of bidders, and G(·) and g(·) are the distribution and

density of bids, respectively. A two-step estimation method follows from this observation:

first construct a pseudo value for each bid and then apply kernel density estimation to the

sample of pseudo values. GPV establish the consistency of their estimator and the optimal

rate.
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Based on the insight of Haile, Hong, and Shum (2003), who considered a quantile-based-

test for the existence of common values, Marmer and Shneyerov (2012, MS hereafter) first

proposed to estimate the valuation distribution based on the quantile representation of the

first-order condition, that is, when the equilibrium bidding strategy is strictly monotone,

valuation quantile function Qv(·) can be expressed as

Qv(α) = Qb(α) +
1

I − 1
α

g(Qb(α))
, 0 ≤ α ≤ 1, (2)

where Qb(·) is the bid quantile function. Note that the right-hand side must be strictly

increasing in α, too. MS proposed to first estimate Qv(·) using plug-in estimators for g(·)
and Qb(·), respectively, and subsequently estimate the valuation density using f (v) =

1/Q′v(Q−1
v (v)). MS show that their estimator is asymptotically normal and achieves the

optimal rate of GPV. Guerre and Sabbah (2012, GS) observed that the second term on the

right hand side of Equation (2) is a known linear function of α multiplied by the quantile

derivative and proposed an optimal local polynomial quantile estimator.

In both estimators of GPV and MS, the bid density g(·) appears in the denominator

of the first step estimation; in MS, the derivative of the bid quantile also appears in the

denominator of the second step. In practice, trimming near the boundaries is needed but can

be troublesome as it is well known that there is no generic guidance. GS does not require

trimming but a choice of a bandwidth. In addition, all quantile estimators discussed above

may not satisfy the monotonicity restriction imposed by the model.

In this paper, we propose to consider the integrated quantile function of the valuation as

in Liu and Luo (2015), who used it for comparing valuation distributions. Define

V(β) ≡
∫ β

0
Qv(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα +

1
I − 1

Qb(β)β, 0 ≤ β ≤ 1. (3)

The integrated quantile representation has the following merits. First, the sample analog of

V(·), denoted by Vn(·), is easy to compute. It essentially requires little more than sorting

the observed bids. Neither bandwidth choice nor trimming is needed. Second, the strict

monotonicity of the bidding strategy necessarily implies the strict convexity of the right-hand
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side. Based on this observation, we can use the greatest convex minorant (g.c.m.) of Vn(·)
as an estimator for V(·). We denote the g.c.m. of Vn as V̂. Since Vn(·) is a piece-wise

linear function of β, so is V̂(·), which can be very easily calculated. Then we can estimate

Qv(·) by taking the piece-wise derivatives of V̂(·). As we will formally prove later, this

estimator is cube-root-n consistent and requires weaker smoothness on model primitive, i.e.,

it only requires that F(·) be continuously differentiable, as opposed to twice continuously

differentiable in GPV and MS. We called it as our first step estimator Q̂v(·). Note that Q̂v(·)
is tuning-parameter-free. If indeed the model admits enough smoothness, we can improve

the convergence rate by considering a kernel smoothed version q̂v(·) of Q̂v(·). We show

that q̂v(·) is asymptotically normal and achieves GPV’s optimal rate. Note that despite that

one needs to choose a bandwidth for q̂v(·) (for which we propose an optimal bandwidth),

there is no need for trimming.1

Another appealing feature of our estimator is that the monotonicity of bidding strategy is

imposed in a simple way through the calculation of g.c.m.. As a result, the estimates Q̂v(·)
and q̂v(·) are always increasing by construction. To the best of our knowledge, Henderson,

List, Millimet, Parmeter, and Price (2012, HLMPP hereafter) were the first to address the

imposition of monotonicity in first price auctions. They argued that nonparametric estimators

that naturally impose existing economic restrictions have empirical virtue. Our method,

however, is different from theirs, which achieves the desired monotonicity constraint by

tilting the empirical distribution of the data by the least amount. Their method requires

repeated re-weighting of the sample. Bierens and Song (2012)’s sieve approach implicitly

imposes the monotonicity constraint, but it can be computationally expensive. Our estimator

imposes the monotonicity by taking the greatest convex minorant of the integrated valuation

quantile function. The g.c.m. of Vn(·) is easy to compute since the it is piece-wise linear.

As a matter of fact, satisfying monotonicity in finite samples is a desirable feature of a

quantile function estimator, see discussions in, for example, Chernozhukov, Fernandez-Val,

1See Hickman and Hubbard (2014) for a modified version of the GPV estimator which replaces trimming with
boundary correction.
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and Galichon (2010). Chernozhukov, Fernandez-Val, and Galichon (2010) proposed a

“rearrangement” approach to achieves the monotonicity. We take the g.c.m. approach on the

integrate-quantile function in our context because it not only delivers the monotonicity, but

also circumvents the necessity of estimating the bid density function in the denominator.

Our estimator is constructed using order statistics of the bids. Indeed, using order statistics

is not uncommon in the literature of nonparametric estimation of auction models. See, e.g.,

Athey and Haile (2007). Recently, Menzel and Morganti (2013) discussed estimation of

value distribution based on the distributions of order statistics. They show that the mapping

between distribution of order statistics and valuation distribution is in general non-Lipschitz

continuous and established optimal rate for varies of parameters of interest. Our main

motivation is to provide computationally-easy estimators for the classical IPV setup of GPV

with all bids being observed, which is, as mentioned by Menzel and Morganti (2013), a

scenario for which the irregularity of inverting order statistics distribution does not rise. The

fact that our first estimator converges at an irregular cube-root-n rate is because we impose

weaker smoothness assumption on the valuation distribution, rather than the non-Lipschitz

continuity of the mapping in other models.

We illustrate our method using the California Highway Procurement auction data set. In

practice, it is common that researchers observe auction-specific characteristics.2 It is worth

noting that our method applies naturally if the observed auction-specific characteristics are

discrete-valued (or discretization of continuous variables) by conditioning on realizations.

The estimate will then be interpreted as conditional valuation quantiles on observed auction

characteristics. When the observed auction-specific characteristics are continuous, GPV and

MS propose to estimate the conditional valuation density by Kernel method, which suffers

the “curse of dimensionality” when the covariates are high dimensional. To overcome such

difficulty, Gimenes and Guerre (2013) explored the insight made by GS that the mapping

between valuation quantile and bids quantile is linear and proposed an augmented-quantile

2In general, the first price auction model is not identified if there is unobserved heterogeneity across auctions,
see Armstrong (2013b).
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regression method. In Section 2.3, we show that our estimation procedure can also take

GS’s estimator for bids quantile function as an input and deliver a consistent and monotone

conditional valuation quantile estimator for each realization of the continuous covariates.

Lastly, we can also use the homogenization method proposed by Haile, Hong, and Shum

(2003) and apply our estimation methods to the homogenized bids. The homogenization

approach requires additional additive separability structure on how valuation depends on

observed characteristics. As a result, it is easier to compute and has faster convergence rate.

The rest of the paper is organized as follows. We lay out the model and propose our

estimator in Section 2. We examine the performance of our estimator in Section 3. Section 4

is the empirical illustration. We conclude the paper in Section 5.

2. MODEL AND MAIN RESULTS

We consider the first-price sealed-bid auction model with independent private values. A

single and indivisible object is auctioned. We make the following assumptions.

Assumption 1. There are L → ∞ identical auctions, and for each auction, there are I

symmetric and risk neutral bidders. Their private values are i.i.d. draws from a common

distribution F(·).

Let the total number of bids be n = LI. The asymptotics is on the number of auctions,

that is, L→ ∞. The assumption that number of bidders I is constant across auctions is just

for simplifying notation; our analysis can be easily extended to conditional on I.

Assumption 2. F(·) is continuously differentiable over its compact support [v, v]. There

exists λ > 0 such that infv∈[v,v] f (v) ≥ λ > 0.

Assumption 2 only requires that F(·) is continuously differentiable, which is weaker than

the twice continuously differentiability, as assumed in the literature, e.g., GPV and MS. It is

well known that the equilibrium strategy is

b = s(v|F, I) ≡ v− 1
F(v)I−1

∫ v

0
F(x)I−1dx.
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GPV show that the first-order condition can be written as Equation (1). Haile, Hong, and

Shum (2003) represents this equation in terms of quantiles as in Equation (2). In this paper,

we consider the integrated quantile function of the valuation as in Equation (3).

Now let us first propose a tuning-parameter-free estimator for the valuation quantile

function. Let b(i) be the i-th order statistic of a sample of bids {bi}n
i=1. Employing

Equation (3), we construct a raw estimator Vn(·) for V(·) as follows. Let Vn(0) = 0. For

α ∈ { 1
n , 2

n , · · · , 1},

Vn (α) =
I − 2

n(I − 1)

nα

∑
i=1

b(i) +
1

I − 1
αb(nα).

For α ∈
(

j−1
n , j

n

)
, j = 1, · · · , n, define

Vn (α) = (j− αn)Vn

(
j− 1

n

)
+ (αn− j + 1)Vn

(
j
n

)
.

Note that Vn(·) may not be convex in finite samples. To obtain a quantile estimator which

respects the monotonicity property, we consider use the left-derivative of the g.c.m. of

Vn(·). Let V̂(·) be the g.c.m. of Vn(·). Since Vn(·) is piecewise linear, so is V̂(·). Define

Q̂v(0) = v and for α ∈
(

j−1
n , j

n

]
, j = 1, · · · , n,

Q̂v(α) = n
{

V̂
(

j
n

)
− V̂

(
j− 1

n

)}
.

By definition, Q̂v(·) is a left-continuous and weakly increasing step function.

Constructing the g.c.m. V̂(·) for a piecewise linear function Vn(·) is computationally

easy. While many algorithms are proposed, the most widely used one is the Pooled Adjacent

Voilators Algorithm (PAVA, see e.g. Robertson, Wright, Dykstra, and Robertson, 1988;

Groeneboom, Jongbloed, and Wellner, 2014). We can envision V̂(·) as a taut string tied

to the left most point (0, 0) and pulled up and under the graph of Vn(·), ending at the last

point (1, Vn(1)). See Appendix D for details.
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Theorem 1. Suppose Assumptions 1 and 2 are satisfied at α0 ∈ (0, 1), then

n
1
3 (Q̂v(α0)−Qv(α0))

d→ C(α0) argmaxt

{
B(t)− t2

}
,

where C(α0) is a constant depends on α0 and B is a two-sided Brownian motion process.

Proof. See Appendix A.1. �

We have a few comments on Theorem 1. First, C(α0) depends on α0, g and Qb and is

estimable (detailed expression in Appendix A.1). To conduct inference on Qv(α0), one

can obtain the critical values by estimating C(α0) and simulating the one-dimensional

Brownian motion B, which is easy to compute. An alternative way is subsampling whose

validity follows straightforwardly from Theorem 1. Second, the n1/3-consistency of our

quantile estimator is obtained under weak assumptions on value distribution F(·) and without

choosing any tuning parameters. It is slower than the optimal rate of n2/5 when F(·) is

twice continuously differentiable, as established in GPV. This is similar to the well-known

results in the literature on isotonic estimation: without imposing additional smoothness

assumptions on the model primitives and without introducing smoothing, one can at most

get cube-root-n rate.

In practice it is often useful to conduct joint inference on a set of quantile levels. For

example, the test for common values in Haile, Hong, and Shum (2003) and test for different

models of entry in Marmer, Shneyerov, and Xu (2013) are characterized by stochastic

dominance relations between distributions. The following Corollary shows that the quantile

estimator is independent across a fixed vector of quantile levels asymptotically.

Corollary 1. Let 0 < α1 < α2 < · · · < αJ < 1. Then

P
(
∩j=1,2,··· ,J{n

1
3 (Q̂v(αj)−Qv(αj)) ≤ zj}

)
= Πj=1,2,··· ,JP

(
C(αj) argmaxt{Bj(t)− t2} ≤ zj

)
,

where Bj, j = 1, 2, · · · , J, are independent two-sided Brownian motions.
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Proof. See Appendix A.2. �

The result in Corollary 1 does not hold in general for quantile estimations. It is useful

when researchers would like to compare multiple quantile levels simultaneously, which

in practice is a useful approximation for comparing the whole distribution. One possible

choice is the multiple testing procedure of Holm (1979), which controls the familywise error

rate of one false rejection. For example, one can calculate the p-vales p̂j, j = 1, 2, · · · J
for each of the J hypothesizes. Rank all the p-values such that p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(J).

Let α be the significance level. If p̂(1) ≥ α/J, then no hypothesis is rejected; otherwise

the procedure rejects hypothesizes H(1), · · · , H(k), where k is the largest integer such that

p̂(j) ≤ α/(J − j + 1). One important source of conservativeness of Holm’s procedure—

dependence among p-values—does not rise here.

Theorem 1 also provides a basis for constructing a simple trimming-free smoothed

quantile estimator that converges at the optimal rate of GPV under appropriate smoothness

conditions as listed in Assumption 3 below. Numerous smooth quantile function estimators

have been studied, see, e.g., Nadaraya (1964) for inverting a kernel distribution function

estimator, Harrell and Davis (1982) for using generalized order statistics and Cheng (1995)

for a Bernstein polynomial estimator. We adopt the kernel estimator used in Yang (1985),

which dates back to Parzen (1979). Specifically, for any 0 < α < 1, let

q̂v (α) =
∫ 1

0

1
h

K
(

α− u
h

)
Q̂v(u)du, (4)

where h is a bandwidth and K(·) is a kernel with a compact support. Note that by construc-

tion, q̂v(·) is necessarily increasing since Q̂v(·) is increasing.

Assumption 3. The valuation density f is continuously differentiable.

Assumption 4. Let K′ be the first order derivative of K. Then K satisfies (1) K has com-

pact support and take value zero on the boundary, (2)
∫

K′(u)du =
∫

u2K′(u)du = 0,

(3)
∫

uK′(u)du = −1, (4)
∫

u3K′(u)du 6= 0.
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Assumption 3 requires same smoothness as in GPV and MS. Assumption 4 is satisfied by

commonly used kernel functions such as second order Epanechnikov or Triweight Kernels.

Theorem 2. Suppose Assumptions 1 to 4 are satisfied, and let α ∈ (0, 1),

(i) if nh5 → c ∈ (0, ∞), then
√

nh(q̂v(α)−Qv(α))
d→ N(B, V ), where

B = −
(√

cQ′′b (α)
3

+
c2α

6(I − 1)
Q
′′′
b (α)

) ∫
u3K′(u)du, V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du.

(ii) if h = cn−r for some 1
5 < r < 1

2 , then

√
n1−r(q̂v(α)−Qv(α))

d→ N(0, V ).

Proof. See Appendix A.5. �

Note that the variance and bias depends on c analytically. One can estimate the optimal

choice of c that minimizes the asymptotic mean squared error, provided that the model has

enough smoothness for consistent estimation of Q
′′′
b (·). Part (ii) of the theorem suggests

that we can use under-smoothing to eliminate the asymptotical bias, in the same way as one

would do for typically nonparametric estimation of density or regression function. We do

not further pursue these issues in this paper.

In the rest of the section, we discuss several interesting extensions of our method.

2.1. Generalization to procurement auctions. Our method can be easily adapted to first

price procurement auction settings. Suppose that there are I bidders competing for a contract

in a first-price sealed bid auction. For each auction, every bidder i simultaneously draws

an i.i.d. cost ci from a common distribution F(·) and submits a bid to maximize his/her

expected profit E[(bi − ci)1(bi ≤ s(minj 6=i cj))]. The lowest bid wins the contract, and the

bidder is paid the amount he/she bid.

10



Differentiating the expected profit with respect to bi gives the following system of first-

order differential equations that define the equilibrium strategy s(·):

(bi − ci)(I − 1)
f [s−1(bi)]

[1− F(s−1(bi))]s′[s−1(bi)]
= 1,

which can be rewritten as

ci = bi −
1

I − 1
1− G(bi)

g(bi)
.

Therefore, the quantile relationship becomes

Qc(α) = Qb(α)− (1− α)/[(I − 1)g(Qb(α))],

where Qc(·) represents the cost quantile function. The integrated quantile function becomes

C(β) ≡
∫ β

0
Qc(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα− 1

I − 1
Qb(β)(1− β)+

1
I − 1

Qb(0). (3’)

To impose the monotonicity constraint, we consider the g.c.m. of the empirical counterpart

of the following function:

C̃(β) ≡ C(1− β),

which is the reflection of the integrated quantile function over the line β = 1/2. The

idea is to utilize the prior information that the maximum possible bid equals the maximum

cost in procurement auctions, i.e. Qb(1) = Qc(1). As the pseudo values are constructed

sequentially, consider the g.c.m. of C̃(·) is preferable to C(·). To see this, note that [Ĉ(1)−
Ĉ(n−j

n )]/(j/n) = I−2
I−1 ∑N

k=n−j+1 b(k)/j + 1
I−1 b(N−j) and [Ĉ(1/n) − Ĉ(0)]/(1/n) =

b(1). By definition, the preferred method starts with the largest pseudo valuation ĉ(n) =
I−2
I−1 b(n) +

1
I−1 b(n−1). Note that the right-hand side converges to Qb(1) = Qc(1) at a fast

rate. On the other hand, considering the g.c.m. of C(·), we would start with an estimate of

the smallest pseudo valuation ĉ(1) ≤ b(1). Although b(1) converges to Qb(0) at a fast rate,

it does not guarantee that ĉ(1) converges to Qc(0) at a fast rate.

For estimation, we construct a raw estimator C̃n(·) for C̃(·) by plugging in the bid

quantile estimator. We then take the g.c.m. of C̃n(·). The pseudo cost of the bidder whose
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bid is the jth highest is constructed as the negative of the right-derivative of the g.c.m. at

β = (j− 1)/n, where j = 1, . . . , n. A smooth estimator for the cost quantile function

follows naturally: q̂c (α) =
∫ 1

0
1
h K
(

α−u
h
)

Q̂c(u)du. Moreover, we can also apply a kernel

density estimator on the sample of pseudo costs: f̂ (c) = 1
nh ∑n

j=1 K
(

ĉj−c
h

)
.

2.2. Estimating the valuation distribution function. Sometimes an analyst might be

more interested in the valuation distribution function than the quantile function. An estimator

of valuation distribution function can be obtained by inverting Q̂. In particular, for any

v0 ∈ (v, v), we can define F̂(v0) = supα{Q̂v(α) ≤ v0}. The following corollary

establishes the limiting distribution of F̂.3

Corollary 2. Let v0 ∈ (v, v) and α0 = F(v0). Suppose the conditions of Theorem 1 are

satisfied, then for any x, as n→ ∞,

P
(

n1/3(F̂(v0)− F(v0)) < x
)
→ P

(
f (v0)C(α0) argmaxt

{
B(t)− t2

}
< x

)
,

where C(α0) and B are as defined in Theorem 1.

Proof. See Appendix A.3. �

To construct an estimator for valuation density, we can first construct a sample of pseudo

valuations employing Q̂v(·). Let v̂j = Q̂v(j/n), where j = 1, . . . , n. Second, we apply a

kernel density estimator on the sample of pseudo values {v̂j}N
j=1: for v ∈ (v, v)

f̂ (v) =
1

nh

n

∑
j=1

K
(

v̂j − v
h

)
.

Since our first step estimator Q̂v(·) is tuning-parameter-free, our estimator of the valuation

density function requires no trimming and only one tuning parameter h.

3Under a similar set of smoothness assumptions to ours, Armstrong (2013a) proposes to estimate the bidding
strategy by maximizing the sample analog of the bidder’s objective function and subsequently estimates
the valuation distribution function at cube-root-n rate. Our approach is based on the integrated-quantile
representation of the first order condition and imposes monotonicity restriction. Both estimators are tuning-
parameter-free and robust to the degree of smoothness in the model.
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2.3. Incorporating auction level heterogeneity. In practice, it is of empirical interest to

incorporate auction-level observed heterogeneity. In this subsection, we discuss several

ways of incorporating such heterogeneity.

In many applications researchers are interested in the valuation quantile/distribution con-

ditional on discrete or discretization of continuous variables. For example, in a procurement

auction, researchers may be interested in the valuation (or cost) quantiles of “large” projects,

which is defined by whether engineers’ estimates (a continuous variable) exceed certain cut-

off values. In these cases, our estimation procedure can be directly applied to corresponding

subsamples and the estimates can be interpreted as the conditional valuation quantile.

Our method can also be applied together with the homogenization method (see Haile,

Hong, and Shum, 2003), one common method of controlling both continuous and discrete

observed heterogeneity in the empirical auction literature. The homogenization approach

assumes that valuations depend on auction-level characteristics in an additively (or multi-

plicatively) separable form, which implies that the bids depend on characteristics in the same

separable way. Under such an assumption, the effect of auction level characteristics can be

controlled by focus on the regression residuals (called homogenized bids) of the original

bids (or log of bids in the multiplicative case) on those covariates. Since our estimators

converge at rates which are slower than root-n, their asymptotic properties are not affected

by the homogenizing step.

If researchers would like to be agnostic about how valuations depend on the continuous

covariates X and are interested in the valuations quantiles conditional on a particular

realization x, our method can also be applied with modification. In particular, we define the

(sample) conditional integrated-quantile functions as

Vn(β|X = x) =


I−2

n(I−1) ∑
nβ
i=1 Qn,b(i/n|X = x) + 1

I−1 βQn,b(nβ|X = x), β ∈
{

1
n , · · · , 1

}

(j− βn)Vn

(
j−1

n |X = x
)
+ (βn− j + 1)Vn

(
j
n |X = x

)
, β ∈

(
j−1

n , j
n

)
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where Qn,b(α|X = x) is a suitable estimator for the conditional quantile function of bids

given X = x. Note that by definition, Vn(·|X = x) is still a piecewise linear function and

its g.c.m., denoted by V̂(·|X = x), is as easy to compute as in the unconditional case. Our

estimator for conditional valuation quantile function, denoted by Q̂v(·|X = x), is then

defined as the piecewise derivative of V̂(·|X = x).

For Qn,b(α|X = x), we adopt the local polynomial estimator proposed by GS, who

established a uniform Bahadur representation for the conditional quantile function and its

derivatives. The limiting results of Q̂v(α|X = x) can be derived following the same lines

as in Theorem 1.

Corollary 3. Suppose that (i) X has a continuously differentiable density function which

is bounded away from zero over its compact support X ⊂ Rd; (ii) for every x, the

conditional valuation distribution F(·|x) is continuously differentiable over its compact

support [v(x), v(x)]. There exists λ(x) > 0 such that infv∈[v(x),v(x)] f (v|x) ≥ λ(x) > 0;

(iii) the bandwidth for the local polynomial regression is chosen such that nhd → ∞ and

nhd+3 → 0. The kernel function is chosen to satisfy Assumption 4. Then for any x in the

interior of X and α0 ∈ (0, 1),

3√
nhd(Q̂v(α0|X = x)−Qv(α0|X = x)) = Op(1).

Proof. See Appendix A.4. �

In the presence of covariates, the rate of convergence of our first stage estimator is
3
√

nhd, which is slower than the
√

nhd rate obtained by GPV and MS under stronger

smoothness assumption on F(·|x). This is analogously to the 3
√

n versus
√

n comparison in

the homogeneous auction case, with the additional hd term resulting from conditional on

d-dimensional covariates.
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3. SIMULATION

To study the finite sample performance of our estimation method, we conduct Monte

Carlo experiments. We adopt the setup of the Monte Carlo simulations from MS. The true

valuation distribution is

F(v) =


0 if v < 0,

vγ if 0 ≤ v ≤ 1,

1 if v > 1,

where γ > 0. Such a choice of private value distributions is convenient since the distributions

correspond to linear bidding strategies as:

s(v) =
(
1− 1

γ(I − 1) + 1
)
· v. (5)

We consider I = 7 bidders, n = 4200 and γ ∈ {0.5, 1, 2}. The number of Monte Carlo

replications is 1000. For each replication, we first generate randomly n private values from

F(·). Second, we obtain the corresponding bids bi employing the linear bidding strategy

(5). Third, we construct a raw estimator Vn(·) for V(·). Let V̂(·) be the g.c.m. of Vn(·).
Fourth, we obtain a sample of pseudo values v̂j as the left-derivative of V̂(·) at j/N and

estimate the valuation density function using a kernel estimator.

We compare our method with MS and GPV. For the MS and GPV methods, we use

the same setups as in MS: the tri-weight kernel function for the kernel estimators and the

normal rule-of-thumb bandwidths in estimation of densities. For our method, we also use the

tri-weight kernel function for the kernel estimators and the normal rule-of-thumb bandwidth

in estimation of f : h = 1.06σ̂vn−1/7, where σ̂v is the estimated standard deviation of the

constructed pseudo valuations {v̂j}N
j=1.

Table 1 shows the simulation results for density estimation. When the distribution is

skewed to the left (γ = 0.5), our method improves MSE and MAD but seems to produce

larger biases near the boundaries. While the MS and GPV methods behave similarly in

terms of MSE and MAD, the former seems to produce larger biases. When the distribution
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is uniform or skewed to the right (γ = 1 or 2), our method performs similarly to the GPV

method, both of which seem perform slightly better than the MS method.

TABLE 1. Simulation Results for Density Estimation

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8
γ = 0.5 MSE MS 0.0068 0.0073 0.0103 0.0131 0.0132 0.0171 0.0202

GPV 0.0056 0.0072 0.0101 0.0132 0.0139 0.0188 0.0218
Ours 0.0044 0.0057 0.0080 0.0100 0.0109 0.0140 0.0163

Bias MS -0.0041 -0.0019 -0.0086 -0.0029 -0.0159 -0.0156 -0.0185
GPV 0.0038 0.0018 -0.0034 0.0037 -0.0019 0.0025 0.0072
Ours 0.0120 0.0043 -0.0016 0.0037 -0.0022 0.0038 0.0056

MAD MS 0.0672 0.0689 0.0806 0.0907 0.0908 0.1027 0.1094
GPV 0.0611 0.0688 0.0800 0.0925 0.0940 0.1106 0.1186
Ours 0.0543 0.0608 0.0711 0.0806 0.0825 0.0952 0.1030

γ = 1 MSE MS 0.0036 0.0050 0.0066 0.0076 0.0102 0.0122 0.0148
GPV 0.0025 0.0035 0.0050 0.0060 0.0082 0.0102 0.0127
Ours 0.0023 0.0033 0.0049 0.0061 0.0083 0.0102 0.0129

Bias MS 0.0003 0.0000 -0.0047 -0.0035 0.0014 -0.0060 -0.0113
GPV 0.0000 0.0015 -0.0023 -0.0011 0.0053 0.0007 -0.0021
Ours 0.0000 0.0016 -0.0027 -0.0020 0.0056 0.0007 -0.0026

MAD MS 0.0479 0.0557 0.0647 0.0688 0.0800 0.0892 0.0961
GPV 0.0402 0.0470 0.0563 0.0610 0.0724 0.0806 0.0904
Ours 0.0389 0.0459 0.0557 0.0615 0.0730 0.0812 0.0901

γ= 2 MSE MS 0.0016 0.0025 0.0037 0.0063 0.0085 0.0108 0.0154
GPV 0.0011 0.0016 0.0025 0.0044 0.0060 0.0078 0.0112
Ours 0.0011 0.0017 0.0028 0.0049 0.0069 0.0091 0.0130

Bias MS -0.0006 -0.0031 -0.0008 -0.0013 -0.0033 -0.0085 -0.0001
GPV 0.0005 -0.0020 0.0007 0.0002 -0.0004 -0.0044 0.0021
Ours 0.0006 -0.0019 0.0013 0.0002 -0.0006 -0.0048 0.0020

MAD MS 0.0320 0.0394 0.0481 0.0637 0.0739 0.0830 0.1008
GPV 0.0263 0.0321 0.0396 0.0528 0.0624 0.0707 0.0864
Ours 0.0266 0.0329 0.0415 0.0555 0.0668 0.0767 0.0929

4. EMPIRICAL ILLUSTRATION

In this section, we implement our method using the California highway procurement

data. In particular, we analyze the data used in Krasnokutskaya and Seim (2011). It
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covers highway and street maintenance projects auctioned by the California Department

of Transportation (Caltrans) between January 2002 and December 2005. We focus on the

procurement auctions with 2 to 7 bidders. For each auction, the data contain the engineer’s

estimate of the project’s total cost, the type of work involved, the number of days allocated

to complete the project, the identity of the bidders and their bids.

Following Haile, Hong, and Shum (2003), we homogenize the bids before implementing

our method to control for observable heterogeneity for each sample (with the same number

of bidders). In particular, we regress the logarithm of the bid (logb) on the logarithm of

the engineer’s estimate (logX), the logarithm of the number of days (logDays) and the

project type dummies. Table 2 displays the results. The homogenized bids (bid_new) are

calculated as the exponential of the differences between the logarithm of the original bids

and the demeaned fitted values of the regression. Table 3 displays the mean and standard

deviation of the original and homogenized bids.

TABLE 2. Regression Results

2 3 4 5 6 7
logX 0.978∗∗∗ 0.966∗∗∗ 1.015∗∗∗ 0.957∗∗∗ 0.932∗∗∗ 0.938∗∗∗

(34.11) (56.68) (50.59) (51.81) (49.91) (56.58)

logDays 0.00650 0.00473 -0.00271 0.0901∗∗∗ 0.138∗∗∗ 0.00430
(0.15) (0.25) (-0.13) (4.76) (6.31) (0.18)

type Yes Yes Yes Yes Yes Yes
n 206 474 564 470 402 252
adj. R2 0.871 0.906 0.857 0.929 0.930 0.947
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We estimate a first price auction model with each sample. Figure 1 displays the estimated

inverse bidding strategies, the estimated valuation quantile functions without and with

smoothing, respectively. The curves represented are: from the sample with 2 bidders (yellow

solid line); 3 bidders (magenta dash-dot line); 4 bidders (cyan solid line); 5 bidders (red
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TABLE 3. Summary Statistics

2 3 4 5 6 7 Total
bid 993.8 967.6 757.7 1136.9 990.9 1769.7 1042.8

(1644.5) (1935.9) (843.7) (4584.7) (3350.3) (7288.0) (3595.9)

bid_new 652.5 587.7 566.3 508.9 464.4 478.5 540.0
(208.4) (190.6) (178.6) (129.0) (135.0) (137.4) (174.0)

cost 402.1 468.0 477.8 453.8 423.6 441.7 451.5
(259.6) (223.6) (218.9) (164.4) (156.3) (159.5) (200.0)

profit 250.4 119.7 88.46 55.09 40.79 36.81 88.59
(75.81) (77.65) (60.62) (49.56) (42.83) (46.68) (83.51)

profit rate 0.439 0.244 0.197 0.136 0.109 0.0978 0.190
(0.213) (0.208) (0.194) (0.167) (0.153) (0.158) (0.206)

Std. Dev. in parentheses. pro f it = bid_new− cost. Profit rate=profit / bid.

ŝ−1(·) Q̂v(·) q̂v(·)

FIGURE 1. Estimation results

dash-dot line); 6 bidders (green solid line); 7 bidders (blue dash-dot line), and the 45-degree

line (black dash line).

All inverse bidding strategies are increasing. The valuation quantile functions seem to be

close except for I = 2. Table 3 displays some summary statistics of the estimated pseudo

costs. The auctions with two bidders tend to be less costly to finish in percentage terms. In

fact, the generated profit rate is almost twice that of the sample with three bidders. As the
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auction becomes more competitive when the number of bidders increase from two to seven,

the profit rate decreases from 44% to about 10%.

5. CONCLUSION

This paper considers nonparametric estimation of first-price auction models based on an

integrated-quantile representation of the first-order condition. The monotonicity of bidding

strategy is imposed in a natural way. We propose two estimators for the valuation quantile

function and derive their asymptotics: a non-smoothed estimator that is tuning-parameter-

free and a smoothed one that is trimming-free. We show the former is cube-root consistent

under weaker smoothness assumptions and the latter achieves the optimal rate of GPV under

standard ones. Monte Carlo simulations show our method works well in finite samples. We

apply our method to data from the California highway procurements auctions.
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APPENDIX A. PROOF OF MAIN RESULTS

A.1. Proof of Theorem 1. For a generic c > 0, let Zn(c) = argmint∈[0,1]{Vn(t)− ct}. If the

argmin is a set, then we take the inf of the set. For any α0 ∈ (0, 1), by van Es, Jongbloed, and Zuijlen

(1998, Theorem 2), the two following events are equivalent

Zn(c) ≥ α0 ⇔ Q̂v(α0) ≤ c.

Therefore, we have for a fixed α0 ∈ [0, 1)

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z⇔ Q̂v(α0) ≤ zn−

1
3 + Qv(α0)⇔ Zn(zn−

1
3 + Qv(α0)) ≥ α0

i⇔ argmin
s∈[0,1]

{Vn(s)− (zn−
1
3 + Qv(α0))s} ≥ α0

ii⇔ argmin
{t:α0+tn−

1
3 ∈[0,1]}

{Vn(α0 + tn−
1
3 )− (zn−

1
3 + Qv(α0))(α0 + tn−

1
3 )} ≥ 0

iii⇔ argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{Vn(α0 + tn−
1
3 )−Vn(α0)−Qv(α0)tn−

1
3 − ztn−

2
3 } ≥ 0

iv⇔ argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{n 2
3 Vn(α0 + tn−

1
3 )− n

2
3 Vn(α0)−Qv(α0)tn

1
3 − zt} ≥ 0,

where (i) holds by definition of Zn, (ii) holds by changing variable s = α0 + tn−
1
3 , and (iii) and (iv)

hold because the argmin stays unchanged when constants are multiplied or added to, or subtracted

from the objective function.

Let Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)−Qv(α0)tn−

1
3

]
, then the above displayed equation

reduces to

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z⇔ argmin

t∈[−α0n
1
3 ,(1−α0)n

1
3 ]

{Wn(t)− zt} ≥ 0

It remains to analyze the asymptotic behavior of Wn(t). Decompose Wn as following

Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
− n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
+ n

2
3

[
V(α0 + tn−

1
3 )−V(α0)−Qv(α0)tn−

1
3

]
.
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The second component equals to 1
2 Q′v(α0)t2 + o(1) by Assumption 2. By Lemma 3, the first right

hand side term converges weakly to α0

(I−1)
√

g(Qb(α0))
B(t), where B is a two sided Brownian Motion

Therefore, we have

Wn(t)
w→ α0

(I − 1)g(Qb(α0))
B(t) +

1
2

Q′v(α0)t2.

To simplify the notation, let the constants in front of B and t2 be a and b, respectively. Note that

a > 0 and b > 0. By Van Der Vaart and Wellner (1996, Theorem 3.2.2) and the property of Brownian

motion,

argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{Wn(t)− zt} d→ argmin
t∈R

{aB(t) + bt2 − zt}

∼ argmin
t∈R

{aB(t) + b(t− z
2b

)2 − z2

4b
} ∼ argmin

t∈R

{aB(t) + b(t− z
2b

)2}

∼ argmin
t∈R

{ a
b

B(t) + (t− z
2b

)2} ∼
( a

b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b

Therefore,

P
(

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z

)
→ P

(( a
b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b
≥ 0

)

= P

(
argmin

t∈R

{B(t) + t2} ≥ − z
2b

(
b
a

)2/3
)

= P

(
argmaxt∈R{B(t)− t2} ≤ z

2b

(
b
a

)2/3
)

Thus we can conclude that

n
1
3 (Q̂v(α0)−Qv(α0))

d→ C(α0) argmaxt∈R{B(t)− t2},

where C(α0) = 2a2/3b1/3 is a constant depends on α0.

A.2. Proof of Corollary 1. Consider a J× 1 vector of mutually different quantile levels (α1, α2, · · · , αJ),

following the arguments in the proof of Theorem 1, the following events are equivalent:

∩j=1,2,··· ,J {n
1
3 (Q̂v(αj)−Qv(αj)) ≤ zj} ⇔ ∩j=1,2,··· ,J

 argmin
t∈[−αjn

1
3 ,(1−αj)n

1
3 ]

{Wjn(t)− zjt} ≥ 0

 ,
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where for j = 1, 2, · · · , J

Wjn(t) = n
2
3

[
Vn(αj + tn−

1
3 )−Vn(αj)

]
− n

2
3

[
V(αj + tn−

1
3 )−V(αj)

]
+ n

2
3

[
V(αj + tn−

1
3 )−V(αj)−Qv(αj)tn−

1
3

]
.

Following the same arguments, we have the convergence of each single component:

Wjn(t)
w→

αj

(I − 1)g(Qb(αj))
Bj(t) +

1
2

Q′v(αj)t2.

where Bj is a two sided Brownian motion. Since Bj is Gaussian, it remains to find their covariance.

Following the arguments in Lemmas 1 to 3 and ignoring the small order terms, we know that for

each given t, the joint limiting distribution of Wjn, j = 1, · · · , J, is determined by the joint limiting

distribution of

n2/3
{

Qb,n(αj + tn−1/3)−Qb,n(αj)−Qb(αj + tn−1/3) + Qb(αj)
}

, j = 1, · · · , J,

or alternatively, the joint limiting distribution of (for t > 0, the case of t < 0 is similar)

n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(αj) < bi ≤ Qb(αj + tn−1/3)]

g(Qb(αj))

)
, j = 1, · · · , J,

To calculate the limit of covariance of above expression at different quantile levels, it is sufficient to

focus on same observation index i since bids are i.i.d.. Since all the αj are mutually different, the we

have for j 6= j′, there is Qb(αj) 6= Qb(αj′) by the strict monotonicity of Qb. Therefore,

lim
n→∞

n1/3E
[(

tn−1/3 − 1[Qb(αj) < bi ≤ Qb(αj + tn−1/3)]
) (

tn−1/3 − 1[Qb(αj′) < bi ≤ Qb(αj′ + tn−1/3)]
)]

= lim
n→∞

E
[
−t2n−1/3 + n1/31[Qb(αj′) < bi ≤ Qb(αj′ + tn−1/3)]1[Qb(αj′) < bi ≤ Qb(αj′ + tn−1/3)]

]
= 0.

Therefore, we can conclude that Bj are asymptotically uncorrelated and hence independent.

Let constants (aj, bj) be defined as

aj =
αj

(I − 1)g(Qb(αj))
, bj =

1
2

Q′v(αj).
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Then we have the joint limiting distribution be given by

P
(
∩j=1,2,··· ,J{n

1
3 (Q̂v(αj)−Qv(αj)) ≤ zj}

)
→ P

(
∩j=1,2,··· ,J

{
argmaxt∈R{Bj(t)− t2} ≤

zj

2bj

(
bj

aj

)2/3
})

= Πj=1,···JP

(
argmaxt∈R{Bj(t)− t2} ≤

zj

2bj

(
bj

aj

)2/3
)

.

A.3. Proof to Corollary 2. Recall that F̂(v0) = supα{Q̂v(α) ≤ v0}. Consistency of F̂(v0)

holds by the consistency of Q̂v and the continuity of the sup operator. It remains to work out the

convergence rate and limiting distribution. Let Z = argmaxt∈R{B(t)− t2}. Now,

P
(

n1/3(F̂(v0)− F(v0)) < x
)
= P

(
F̂(v0) < n−1/3x + F(v0)

)
Note that the event {F̂(v0) < n−1/3x + F(v0)} is equivalent to {v0 < Q̂v(n−1/3x + F(v0))}.

Using the fact that F(v0) = α0, Qv(α0) = v0, and (Q′v(α0))−1 = f (v0), we have

P
(

F̂(v0) < n−1/3x + F(v0)
)
= P

(
Q̂v(n−1/3x + F(v0)) > v0)

)
= P

(
Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0) > v0 −Qv(n−1/3x + α0)

)
= P

(
Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0) > −n−1/3Q′v(α0)x + O(n−2/3))

)
= P

(
f (v0)n1/3(Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0)) < x + O(n−1/3))

)
Repeat the proof of Theorem 1 shows that for each x, n1/3(Q̂v(n−1/3x + α0)− Qv(n−1/3x +

α0)) has the same limiting distribution as n1/3(Q̂v(α0)−Qv(α0)). Therefore, we have

P
(

n1/3(F̂(v0)− F(v0)) < x
)
→ P ( f (v0)C(α0)Z < x) .

A.4. Proof to Corollary 3. We give the sketch of the proof for brevity. Let γn be a deterministic

diverging sequence whose rate will be determined later. For a given x, define

Wn(t|x) = γ2
n

[
Vn(α0 + tγ−1

n |x)−Vn(α0|x)−Qv(α0|x)tγ−1
n

]
.
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Following the same argument as in Theorem 1, we have

γ−1
n (Q̂v(α0|x)−Qv(α0|x)) ≤ z⇔ argmin

t∈[−α0γn,(1−α0)γn]

{Wn(t|x)− zt} ≥ 0

Then we conduct the same decomposition:

Wn(t|x) = γ2
n

[
Vn(α0 + tγ−1

n |x)−Vn(α0|x)
]
− γ2

n

[
V(α0 + tγ−1

n |x)−V(α0|x)
]

︸ ︷︷ ︸
≡WA

n (t)

+ γ2
n

[
V(α0 + tγ−1

n |x)−V(α0|x)−Qv(α0|x)tγ−1
n

]
︸ ︷︷ ︸

= 1
2 Q′v(α0|x)t2+o(1)

.

It remains to analyze the asymptotic behavior of WA
n . It can be observed from the definition of

Vn(·|x) that for any τ ∈ (0, 1),

Vn(τ|x) =
I − 2
I − 1

∫ τ

0
Qn,b(t|x)dt +

1
I − 1

τQn,b(τ|x) + O(1/n),

where Qn,b(τ|x) is chosen to be the local polynomial estimator of Guerre and Sabbah (2012), whose

Assumptions X, F and K can be verified to hold in our context. Since we do not have to estimate the

quantile derivatives, we choose the order ν of the polynomial as ν = 0. Using Guerre and Sabbah

(2012)’s uniform Bahadur representation, we have for any τ ∈ (0, 1),

Qn,b(τ|x)−Qb(τ|x) =
βn(τ)

(nhd)1/2 + O
(
h2)+ Op

(
log n
nhd

)3/4

,

where the first right hand side (RHS) is the first order approximation, the second RHS term is the

bias and its order is determined by the twice continuous differentiability of Qb, and the third RHS

term is the Bahadur representation error, and βn is defined as

βn(τ) = J−1
n

2
(nhd)1/2

n

∑
i
{1[bi ≤ Q∗b(τ|x)]− τ}K

(
Xi − x

h

)
,

where Jn
p→ J for some constant, K(·) is the kernel function and Q∗b is the argmin of the population

criterion function.

Now take γn = (nhd)1/3, then O(γ2
nh2) = o(1) since h is chosen such that nhd+3 → 0, and(

γ2
n log n
nhd

)3/4
= op(1) since nhd → ∞. Note that the bias is eliminated by under-smoothing.
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Following similar argument as in Lemmas 1 to 3, the limiting behavior of WA
n (t) when t ≥ 0

(the case of t < 0 similar) depends on the following dominant term (up to additive asymptotically

negligible and some multiplicative constant terms):

1√
nhd

n

∑
i
(nhd)1/6

{
t(nhd)−1/3 − 1[Q∗b(α0|x) < bi ≤ Q∗b(α0 + t(nhd)−1/3|x)]

}
︸ ︷︷ ︸

≡ξi(t)

K
(

Xi − x
h

)
.

Guerre and Sabbah (2012, Lemma A.1) shows that ξi(t) has zero mean. Furthermore, for arbitrary

t, s > 0,

lim
n→∞

E[ξi(t)ξi(s)] = lim
n→∞

E{E[ξi(t)ξi(s)|x]}

= lim
n→∞

E

{
K2
(

Xi − x
h

)
[min{t, s}+ O(γ−1

n )]

}
= hd fX(x)min{t, s}

∫
K2(u)du + o(hd),

it follows that 1√
nhd ∑i ξi(t) converges in distribution to normal for each t and given ξi(t) is sum of

indicator functions, 1√
nhd ∑i ξi(·) weakly converge to a constant multiplied by a Brownian motion

process. The rest of the proof follows similarly from Theorem 1.

A.5. Proof of Theorem 2. For notation simplicity, let Kh(·) = (1/h)K(·/h). Then

q̂v(α) =
∫

Kh (α− u) dV̂(u) =
∫

Kh (α− u) dVn(u) +
∫

Kh (α− u) d(V̂ −Vn)(u)

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′h(α− u)(V̂(u)−Vn(u))du

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′h(t)(V̂(α + ht)−Vn(α + ht))dt

=
∫

Kh (α− u) dVn(u) + Op((n/ log n)−2/3/h) (6)

where the third inequality holds by integration by parts, and the last equality holds by Lemma 8.

It is then sufficient to focus on the first right hand side term. Since Qv,n is piecewise flat and is
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left-continuous, we have

∫
Kh (α− u) dVn(u)−Qv(α) =

∫
Kh (α− u) Qv,n(u)du−Qv(α)

=
n

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du−Qb(α)︸ ︷︷ ︸
An(α)

+
1

I − 1

(
n

∑
i=1

(i− 1)(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))

)
︸ ︷︷ ︸

Bn(α)

.

An(α) is the standard smooth quantile estimator. Yang (1985, Theorem 1) shows that when

nh5 → c,
√

nhAn(α)
p→
√

cQ′′b (α)
∫

u2K(u)du = −
√

c
3 Q′′b (α)

∫
u3K′(u)du, and when nh5 → 0,

√
nhAn(α)

p→ 0. On the other hand, Lemma 10 shows that when nh5 → c,
√

nh(B̃n(α) −
α

g(Qb(α))
)

d→ N(B, V ), where

B = − c2α

6(I − 1)
Q
′′′
b (α)

∫
u3K′(u)du V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du,

and when nh5 → 0,
√

nh(B̃n(α) − α
g(Qb(α))

)
d→ N(0, V ). This establishes the conclusion of

Theorem 2.

APPENDIX B. LEMMAS FOR THEOREM 1

Lemma 1. Suppose that Assumptions 1 and 2 hold, then for any α0 ∈ (0, 1) and uniformly over

t ∈ T , where T is compact,

n2/3

{∫ α0+t/n1/3

α0

Qb,n(τ)dτ −
∫ α0+t/n1/3

α0

Qb(τ)dτ

}
p→ 0.

Proof. Assumption 2 implies that Qb is twice continuously differentiable (see Guerre, Perrigne, and

Vuong, 2000, Proposition 1-(iv)). By the Bahadur representation for quantile functions (see, e.g.

Bahadur, 1966; Kiefer, 1967), we know that uniform in τ ∈ [δ, 1− δ],

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))
+ Oa.s.

(
n−3/4(log n)1/2(log log n)1/4

)
.
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Since α0 ∈ (0, 1), we have

n2/3
∫ α0+t/n1/3

α0

(Qb,n(τ)−Qb(τ)) dτ = n2/3
∫ α0+t/n1/3

α0

(
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))

)
dτ+ op(1)

= n2/3
∫ Qb(α0+t/n1/3)

Qb(α0)

(
F(u)− 1

n ∑
i

1[bi ≤ u]

)
du + op(1)

=
1√
n ∑

i
n1/6

∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du + op(1)

=
1√
n ∑

i
ξn(bi, t) + op(1),

where ξn(bi, t) = n1/6
∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du. It is sufficient to show that 1√

n ∑i ξn(bi, t)

converges uniformly to zero in probability.

Note that E[ξn(bi, t)] = 0 and the summand are i.i.d.. For each n, define a class of functions

indexed by t: Ξn ≡ {ξn(·, t) : t ∈ T }. Then we can have the following observations.

(i) Let t∗ = argmaxt∈T |Qb(α0 + t/n1/3)−Qb(α0)| and let ξ̄(b) ≡ n1/6|Qb(α0 + t∗/n1/3)−

Qb(α0)|(F(u)− 1[b ≤ u]). Then ξ̄(b) is an envelope function for Ξn. We also have Eξ̄2(b) = O(1)

since |Qb(α0 + t∗/n1/3)−Qb(α0)| = O(n−1/3).

(ii) For any ε > 0, we have E[ξ̄2(b)1[ξ̄(b) > ε
√

n]] = o(1). This is because ξ̄(b) > ε
√

n if

and only if |Qb(α0 + t∗/n1/3)−Qb(α0)|(F(u)− 1[b ≤ u]) > εn1/3 and the latter is a probability

event with probability approaches zero, whereas E[ξ̄2] is bounded.

(iii) For any εn ↓ 0, there is sup(t,s)∈T 2 :|t−s|≤εn
E{ξn(b, t) − ξn(b, s)}2 = o(1). To verify

this claim, assume without loss of generality that t > 0 and s < 0. Then ξn(b, t)− ξn(b, s) =

n1/6
∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
(F(u)− 1[bi ≤ u]) du and almost surely

{ξn(b, t)− ξn(b, s)}2 = n1/3

{∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
(F(u)− 1[bi ≤ u]) du

}2

≤ n1/3

{∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
|F(u)− 1[bi ≤ u]| du

}2

≤ 4n1/3
{

Qb(α0 + t/n1/3)−Qb(α0 + s/n1/3)
}2

= n−1/3O(|t− s|),
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where the second inequity holds because |F(u)− 1[bi ≤ u]| ≤ supu F(u) + 1 ≤ 2. The claim is

therefore verified.

(iv) Let N (ε, Ξn, L2(P)) be the L2-covering number for Ξn with respect to probability measure

P , then for every εn ↓ 0, we have supP∗
∫ εn

0

√
log N (ε‖ξ̄(b)‖P∗,2, Ξn, L2(P∗))dε = o(1).

This claim holds by observing that ξb,t is continuously differentiable with respect to t and hence

Ξn belongs to the parametric class (see Van der Vaart, 2000, Example 19.7), which implies the

convergences of the integral.

(v) We derive the limit of the covariance function. Take t, s ∈ T ,

E[ξn(bi, t)ξn(bi, s)] = E

[
n1/3

∫ Qb(α0+t/n1/3)

Qb(α0)
1[bi ≤ u]du

∫ Qb(α0+s/n1/3)

Qb(α0)
1[bi ≤ u]du

]
+ o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
E {1[min{u, v} ≥ bi]} dudv + o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
G(min{u, v})dudv→ 0,

where G is the c.d.f. of the bid distribution. Therefore, H(t, s) ≡ limn→∞ E[ξn(bi, t)ξn(bi, s)] = 0

for any t, s ∈ T .

Based on (i)-(v) and Van Der Vaart and Wellner (1996, Theorem 2.11.22), 1√
n ∑i ξn(bi, t) con-

verges weakly to a zero mean Gaussian process G with sample path define on T and with covariance

function H(t, s). By the property of Gaussian process, H(t, s) = 0 implies that the limit process

G(t) = 0 for all t almost surely. Because the mapping supt G(·)→ R (from the set of continuous

functions defined on compact set to R) is continuous with respect to the sup-norm, we can further

apply the continuous mapping theorem and have

1√
n ∑

i
ξn(bi, ·)

w→ G⇒ sup
t

1√
n ∑

i
ξn(bi, t) d→ sup

t
G(t) = 0⇒ sup

t

1√
n ∑

i
ξn(bi, t)

p→ 0.

The conclusion of the Lemma holds.

Lemma 2. Suppose that Assumptions 1 and 2 hold, then

n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
w→ α0

g(Qb(α0))
B(t),

where B is a two-sided Brownian motion.
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Proof. By Van Der Vaart and Wellner (1996, Theorem 1.6.1), it is sufficient to show the result holds

for a sequence of compact sets T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · such that 0 ∈ T1 and ∪∞
k=1Tk = R.

Denote T +
k = Tk ∩ R+ and T −

k = Tk ∩ R−. Given Assumption 2, we can apply Bahadur

representation again (see Lemma 1) and know that uniform in τ,

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))
+ Oa.s.(n−3/4(log n)1/2(log log n)1/4.

We consider t ≥ 0 first. Let r1n = Oa.s.(n−1/12(log n)1/2(log log n)1/4, we have uniformly in

t ∈ T +
k ,

n2/3
{

Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)
}

=
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 − 1[bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r1n

=
n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
+ r1n + r2n,

where

r2n =
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
= n1/6

(
1

g(Qb(α0 + tn−1/3))
− 1

g(Qb(α0))

)
1√
n ∑

i
ξi = n1/6O(n−1/3)Op(1) = op(1),

where ξi = α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]. For the leading term, it is can be shown by

standard method (e.g. Kim and Pollard, 1990) that

n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
w→ 1

g(Qb(α0))
B(t),

where B is a Brownian motion over a sequence of compact sets T +
1 ⊆ T +

2 ⊆ · · · ⊆ T +
k ⊆ · · · .
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When t < 0, we have uniformly in t ∈ T −
k ,

n2/3
{

Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)
}

=
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 − 1[bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r̃1n

=
n1/6
√

n ∑
i

(
tn−1/3 + 1[Qb(α0 + tn−1/3) < bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r̃1n + r̃2n,

where the two asymptotically negligible terms r̃1n and r̃2n are analogously defined as r1n and r2n in

the proof of the case t ≥ 0, respectively. The convergence result holds analogously over a sequence

of compact sets T −
1 ⊆ T −

2 ⊆ · · · ⊆ T −
k ⊆ · · · .

The conclusion follows by combining the results for both t ≥ 0 and t < 0.

Lemma 3. Suppose that Assumptions 1 and 2 hold, then

n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
− n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
w→ α0

(I − 1)g(Qb(α0))
B(t)

where B is a two-sided Brownian motion.

Proof. Recall that for any τ ∈ (0, 1),

Vn(τ) =
1
n

I − 2
I − 1 ∑

i
bi1[bi ≤ Qb,n(τ)] +

1
I − 1

τQb,n(τ) + Op(1/n)

≡ I − 2
I − 1

V1n(τ) +
1

I − 1
V2n(τ) + Op(1/n).

Likewise,

V(τ) =
I − 2
I − 1

∫ τ

0
Qv(t)dt +

1
I − 1

τQb(τ) ≡
I − 2
I − 1

V1(τ) +
1

I − 1
V2(τ).
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The part associates with V1n, that is, n
2
3

[
V1n(α0 + tn−

1
3 )−V1n(α0)

]
−n

2
3

[
V1(α0 + tn−

1
3 )−V1(α0)

]
converges in probability to zero by Lemma 1. For the part associated with V2n, note that

n
2
3 (I − 1)

[
V2n(α0 + tn−

1
3 )−V2n(α0)

]
− n

2
3

[
V2(α0 + tn−

1
3 )−V2(α0)

]
= n2/3Qb,n(α0 + tn−1/3)(α0 + tn−1/3)− n2/3Qb,n(α0)α0 − n2/3Qb(α0

+ tn−1/3)(α0 + tn−1/3) + n2/3Qb(α0)α0

= n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
+ n1/3t

{
Qb,n(α0 + tn−1/3)−Qb(α0 + tn−1/3)

}
The second right hand side term, for |t| < K, is uniformly bounded by order n1/3 × n−1/2 ×

Op(1)
p→ 0. The first right hand side term is dealt with by Lemma 2.

APPENDIX C. LEMMAS FOR THEOREM 2

We introduce some notation. Let kn be a sequence of integers such that kn → ∞ and n/kn → ∞.

Without loss of generality we assume kn divides n and let `n = n/kn. We therefore can divide

[0, n] into kn equal size intervals with each interval contains `n consecutive integers. Let {si, i =

1, 2, · · · , kn} be the set of upper boundary of those intervals such that si = i`n.

For (i− 1)`n ≤ s < i`n, i = 1, 2, · · · , kn, define

L(s) =
s− (i− 1)`n

`n
V
(

i
n

)
+

i`n − s
`n

V
(

i− 1
n

)
,

and

Ln(s) =
s− (i− 1)`n

`n
Vn

(
i
n

)
+

i`n − s
`n

Vn

(
i− 1

n

)
,

That is, L and Ln are the linear interpolation of V and Vn on kn knots {s1/n, s2/n, · · · , skn /n},

respectively. Note that since V is convex under H0, L is necessarily convex. However Ln may not be

convex since Vn is not necessarily convex. Let An be the event such that Ln is convex. Since Ln is
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convex if and only if each segment is convex, the complement of An can be written as

Ac
n =

kn−1⋃
i=2

{
Vn

(
(i− 1)`n

n

)
+ Vn

(
(i + 1)`n

n

)
< 2Vn

(
i`n

N

)}

=
kn⋃

i=2

{
V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)

+∆n

(
(i− 1)`n

n

)
+ ∆n

(
(i + 1)`n

n

)
− 2∆n

(
i`n

n

)
< 0

}
,

where ∆n ≡ Vn −V.

Lemmas 4 to 8 shows that the sup distance between Vn and V̂ is small, which we adapted from

Pal and Woodroofe (2006). Lemmas 9 and 10 establish the limiting distribution of the smoothed

estimator.

Lemma 4. Suppose that Assumption 3 is satisfied, then there exists a positive c1 such that mini=2,··· ,kn−1 |V
(
(i−1)`n

n

)
+

V
(
(i+1)`n

n

)
− 2V

(
i`n
n

)
| ≥ c1

k2
n
.

Proof. By Assumption 3, there exists c1 > 0 such that Q′v(α) ≥ c1 > 0 for all α ∈ [0, 1]. Then we

have

V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)
=
∫ (i+1)`n

n

i`n
n

Qv(α)dα−
∫ i`n

n

(i−1)`n
n

Qv(α)dα ≥
∫ (i+1)`n

n

i`n
n

[
Qv(α)−Qv

(
i`n

n

)]
dα

=
`n

n

[
Qv(α

∗
n)−Qv

(
i`n

n

)]
≥ c1

`2
n

n2 =
c1

k2
n

. �

Lemma 5. Let ‖ · ‖ denote the sup norm. Conditional on An, there is

‖Vn − V̂‖ ≤ 2‖(Vn − Ln)− (V − L)‖+ 2‖V − L‖.

Proof. By Kiefer and van Wolfowitz (1976), for any convex function m, ‖V̂ −m‖ ≤ ‖Vn −m‖.

Therefore,

‖Vn− V̂‖ ≤ ‖Vn− Ln‖+ ‖Ln− V̂‖ ≤ 2‖Vn− Ln‖ ≤ 2‖(Vn− Ln)− (V− L)‖+ 2‖V− L‖. �
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Lemma 6. Suppose that Assumption 3 is satisfied, then there exists c3 > 0 such that for all s ∈ [0, n],

0 ≤ L(s)−V(s) ≤ c3

k2
n

.

Proof. L(s) > V(s) follows immediately by the convexity of V. The other inequality holds follows

from a similar argument as in Lemma 4 and the fact that Q′v(α) is bounded from above uniformly.

Lemma 7. Suppose that Assumptions 1 and 3 is satisfied, then

‖Vn − Ln −V + L‖ = Op

(√
log kn

nkn

)
+ Op

(
log n

n

)
.

Proof. Define function VP such that VP(j/n) = V(j/n) for each j/n and otherwise equals to

its own interpolation. It is obvious that ‖VP − V‖ = O(1/n). It is then sufficient to focus on

Vn − Ln − VP + L. Note that all four functions are piece-wise linear, and so does there linear

combinations. Therefore, the sup must be achieved at some knot(s). Based on this observations, we

can write

‖Vn − Ln −VP + L‖

= max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆n(j/n)− j− (i− 1)`n

`n
∆n(i/n)− i`n − j

`n
∆n((i− 1)/n)

∣∣∣∣ ,

where for t ∈ [0, 1],

∆n(t) = Vn(t)−VP(t) = Vn(t)−V(t) + O(1/n)

=
I − 2
I − 1

{
[tn]

∑
i=1

b(i)
n
−
∫ t

0
Qb(α)dα

}
︸ ︷︷ ︸

∆A(t)

+
1

I − 1

{
[tn]
n

b(j) − tQb(t)
}

︸ ︷︷ ︸
∆B(t)

+O(1/n)

where [x] denotes the integer part of x. Note that ∆A is an integrated quantile process. By Tse

(2009, Theorem 2.1), there exists a Gaussian process Gn and Brownian bridge BA
n defined on proper

measurable space such that for any τ < 1/6,

‖
√

n∆A − ψn‖
a.s.
= O(n−τ),
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where ψn(t) = Gn(t) +
∫ t

0 BA
n (u)dQb(u). On the other hand, by Csorgo and Revesz (1978, Theo-

rem 6), there exists a sequence of Brownian bridge Bn such that supδn≤t≤1−δn
|g(Qb(t))

√
n∆B(t)−

Bn(t)|
a.s.
= Op(n−1/2 log n). We can then conclude

‖Vn − Ln −VP + L‖

≤ max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆A(j/n)− j− (i− 1)`n

`n
∆A(i/n)− i`n − j

`n
∆A((i− 1)/n)

∣∣∣∣
+ max

i=1,···Kn
max

(i−1)`n≤j≤i`n

∣∣∣∣∆B(j/n)− j− (i− 1)`n

`n
∆B(i/n)− i`n − j

`n
∆B((i− 1)/n)

∣∣∣∣+Op(1/n)

d
=

1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣ψn(j/n)− j− (i− 1)`n

`n
ψn(i/n)− i`n − j

`n
ψn((i− 1)/n)

∣∣∣∣+Op(n−τ−1/2)

+
1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣Bn(j/n)− j− (i− 1)`n

`n
Bn(i/n)− i`n − j

`n
Bn((i− 1)/n)

∣∣∣∣+Op(log n/n)

≤ 1√
n

sup
0≤t−s≤ 1

kn

|ψn(t)−ψn(s)|+
1√
n

sup
0≤t−s≤ 1

kn

|Bn(t)− Bn(s)|+Op(log n/n)+Op(n−τ−1/2)

≤
√

2 log log n√
n

1√
kn

+
1√
n

√
log log Kn√

kn
+ Op(log n/n) + Op(n−τ−1/2)

where the last two inequalities result from the continuity module of Gaussian processes and the fact

that g(b) ≥ b > 0 for all b (GPV Proposition 1). Recall that kn ∝ n
log n , we con conclude that the

right hand side is of order Op((n/ log n)−2/3).

Lemma 8. Suppose Assumptions 3 and 4 are satisfied, the ‖V̂ −Vn‖ = Op((n/ log n)−2/3).

Proof. The conclusion holds by Lemmas 5 to 7. �

Lemma 9. Let z(i) = n(b(i) − b(i−1)) and wi = ((i− 1)/n− α)
∫ i

n
i−1

n
Kh(u − α)du. Suppose

Assumption 3 is satisfied, then ∑i z(i)wi = op(1/
√

nh).

Proof. Since bi has bounded support, it is without loss of generality to prove the case when bi follows

the uniform distribution. Pyke (1965, Section 2.1) shows that z(i) are identically distributed across

i. Furthermore, E[z(i)] = n(n + 1)−1, V(z(i)) = n3(n + 1)−2(n + 2)−1 and Cov(z(i)z(j)) =

−n2(n + 1)−2(n + 2)−1. Let ρij be the correlation coefficient, so ρij = 1 if i = j, and ρij = −1/n

otherwise.
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Note first that E[∑i z(i)wi] = n(n+ 1)−1 ∑i wi = (1/h)
(∫ 1

0 (u− α)K(u− α/h)du + O(1/n)
)
=

O(1/nh) = op(1/
√

nh) since
∫

uK(u) = 0 by assumption. Next consider

V(∑
i

z(i)wi) = ∑
i

w2
i V(z(i)) + 2 ∑

i 6=j
wiwjCov(z(i), z(j)) = V(z(i))

(
∑

i
w2

i + 2 ∑
i 6=j

wiwjρij

)
.

Consider wi, there exists a u∗i ∈ ((i− 1)/n, i/n) such that

wi =

(
i− 1

n
− α

) ∫ i
n

i−1
n

Kh(u− α)du =
1

nh

(
i− 1

n
− α

)
K
(

u∗i − α

h

)
,

Since the kernel function has bounded support, that is, K(u) = 0 if |u| > K̄. Then wi 6= 0

only if |u∗i − α| ≤ K̄h. Therefore the quantity i− 1/n for nonzero wi is around h neighborhood

of α, which implies that each of the nonzero |wi| is of order 1
nh × h = 1

n . Let iα be the nearest

integer to nα, then we know wi 6= 0 only if |i− iα| ≤ Cnh for some constant C, which implies

that in the expression of V(∑i z(i)wi), there are of order nh nonzero summands. Since each

wi is of order 1/n, ρij = −1/n when i 6= j, V(z(i)) = O(1), the order of V(∑i z(i)wi) is

O(nh× (1/n)2 + (nh)2 × (1/n)3) = O(h/n), which is of smaller order than 1/nh.

The above argument shows that E[∑i z(i)wi] = op(1/
√

nh) and V(∑i z(i)wi) = op(1/nh),

therefore we can conclude that ∑i z(i)wi = op(1/
√

nh).

Lemma 10. For 0 < α < 1, let

Bn(α) ≡
n

∑
i=1

(i− 1)(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))
.

If Assumptions 3 and 4 are satisfied, then
√

nhBn(α)
d→ N(B, V ), where constant B and V are

defined below in the proof.

Proof. Define B̃n(α) as

B̃n(α) =
n

∑
i=1

αn(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))
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Note first when n is large,

n
n

∑
i=1

(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du = n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du

− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du + nb(n)
∫ 1

n−1
n

Kh (α− u) du− nb(0)
∫ 1/n

0
Kh (α− u) du

≈ n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du.

The last equality holds because under Assumption 4, when n is large, Kh (t) = 0 for any t 6= 0.

Recall that Kh(·) = (1/h)K(·/h), we know that

B̃n(α) = αn
n−1

∑
i=1

b(i)

{∫ i
n

i−1
n

Kh (α− u) du−
∫ i+1

n

i
n

Kh (α− u) du

}

=
α

h2

n−1

∑
i=1

b(i)
∫ i

n

i−1
n

K′
(

u− α

h

)
du + Op(1/n).

By Welsh (1988, main theorem, part (ii)), under Assumptions 3 and 4 and nh5 → c,
√

nh(B̃n(α)−
α

g(Qb(α))
)

d→ N(B, V ), where

B = − c2α

6(I − 1)
Q
′′′
b (α)

∫
u3K′(u)du V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du.

When h = cn−r for some 1
5 < r < 1

2 ,
√

n1−r(B̃n(α)−Qv(α))
d→ N(0, V ).

Lastly, let z(i) = n(b(i) − b(i−1)) and wi = ((i− 1)/n− α)
∫ i

n
i−1

n
Kh(u− α)du. Observe that

Bn − B̃n = ∑i z(i)wi. Lemma 9 shows that it is of order op(1/
√

nh). Therefore we can conclude

that
√

nhBn(α)
d→ N(B, V ). �

APPENDIX D. COMPUTE THE GREATEST CONVEX MINORANT OF Vn(·)

We now describe how to compute the greatest convex minorant of Vn(·).

First, consider the coordinate vectors of the piecewise linear function Vn(·): {(0, 0),(1/n, Vn(1/n)),

. . ., (1, Vn(1))}. We find the smallest slope of each (j/n, Vn(j/n)) with respect to the origin, which

defines the first partition on the g.c.m.. Let j1 = argminj∈{1,...,n}
Vn(j/n)−0

j/n−0 . The first partition is the

line segment connecting (0, 0) and (j1, Vn(j1/n)).
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Second, we find the next smallest slope, after removing the first partition from further con-

sideration. In particular, consider the coordinate vectors {(j1, Vn(j1/n)), . . . , (1, Vn(1))}. Let

j2 = argminj∈{j1+1,...,n}
Vn(j/n)−Vn(j1/n)

j/n−j1/n . The second partition is the line segment connecting

(j1, Vn(j1/n)) and (j2, Vn(j2/n)).

We continue in this manner until we reach the end of the points (1, Vn(1)). The resulting co-

ordinate vectors {(0, 0), (j1, Vn(j1/n)), (j2, Vn(j2/n)), . . . , (1, Vn(1))} define the greatest convex

minorant of Vn(·), which is also piecewise linear.
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