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Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM es-

timator based on valid moment conditions and an aggressive GMM estimator based on both

valid and possibly misspeci�ed moment conditions, where the weight is the sample analog of

an infeasible optimal weight. It is an alternative to pre-test estimators that switch between the

conservative and aggressive estimators based on model speci�cation tests. This averaging esti-

mator is robust in the sense that it uniformly dominates the conservative estimator by reducing

the risk under any degree of misspeci�cation, whereas the pre-test estimators reduce the risk in

parts of the parameter space and increase it in other parts.

To establish uniform dominance of one estimator over another, we establish asymptotic

theories on uniform approximations of the �nite-sample risk di¤erences between two estimators.

These asymptotic results are developed along drifting sequences of data generating processes

(DGPs) that model various degrees of local misspeci�cation as well as global misspeci�cation.

Extending seminal results on the James-Stein estimator, the uniform dominance is established

in non-Gaussian semiparametric nonlinear models. The proposed averaging estimator is applied

to estimate the human capital production function in a life-cycle labor supply model.
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1 Introduction

The generalized method of moments (GMM) estimator (Hansen, 1982) is one of the most popular

methods for estimating moment-based models in economics and �nance. Properties of the GMM

estimator rely on the quality of the moment conditions. While it is appealing to use more moment

restrictions for a more e¢ cient estimator, the validity of some moment conditions may be subject

to empirical examination. Various speci�cation tests and model selection criteria are available

for testing the validity of moment conditions. However, such data-dependent decisions on model

speci�cation do not always improve the estimator. For example, consider the comparison between

a pre-test GMM estimator that only uses some additional moment restrictions if a speci�cation

test (e.g., the J-test) suggests their validity and a conservative GMM estimator that never uses

these additional moment restrictions.1 Measured by the mean squared error (MSE), this pre-test

estimator does better than the conservative estimator in parts of the parameter space and worse

than the latter in other parts of the parameter space. Post-model-selection estimators also exhibit

this type of non-uniform behavior (Leeb and Pötscher, 2008).

This paper aims to uniformly reduce the risk of a GMM estimator by utilizing potentially

misspeci�ed moment restrictions with data-dependent averaging. Instead of using tests or model-

selection criteria to switch between the �conservative�estimator that never uses additional moments

and the �aggressive� estimator that always uses additional moments, we consider an averaging

estimator that combines the two with a smooth data-dependent weight. The averaging weight

is derived as the sample analog of an infeasible optimal weight. This paper establishes �uniform

dominance� in the sense that in large sample the risk of this averaging estimator is smaller than

or equal to that of the conservative estimator for any DGP in a given parameter space and the

former is strictly smaller than the latter for some DGPs. For DGPs in this parameter space, the

additional moment conditions may be correctly speci�ed or misspeci�ed to any degrees2. The

uniform dominance result insures the averaging estimator against any e¢ ciency loss, even if the

additional moments are misspeci�ed and the degree of misspeci�cation is unknown. Constructing

uniformly valid tests in non-standard problems is an active research area in econometrics in recent

years, including models with weak identi�cation, partial identi�cation, local to unit root, post-

model-selection inference, etc. This paper focuses on the risk of a point estimator rather than

hypothesis testing.

To establish uniform dominance of one estimator over another, this paper provides new as-

ymptotic theories on uniform approximations of the �nite-sample risk di¤erences between two es-
1Throughout the paper, we assume that the GMM estimator is constructed with the optimal weighting matrice,

which is de�ned in footnote 4.
2These DGPs include the n�1=2 local misspeci�cation (Newey 1985), the global misspeci�cation (Hall and Inoue,

2003), as well as many other DGPs studied in this paper.
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timators. These asymptotic results are developed along drifting sequences of DGPs with di¤erent

degrees of misspeci�cation. This class of DGPs include the crucial n�1=2 local sequences that are

considered by Hjort and Claeskens (2003), Saleh (2006), Liu (2013), Hansen (2014a,b,c), DiTraglia

(2014) for various averaging estimators, as well as some more distant sequences. The theoretical

results glue all sequences together and show that they are su¢ cient to provide a uniform approx-

imation of the �nite-sample risk di¤erences. The proof uses the techniques developed in Andrews

and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for uniformly valid tests

and applies them to uniform risk comparison in moment-based models.

This uniform dominance result is related to the Stein�s phenomenon (Stein, 1956) in parametric

models. The James-Stein (JS) estimator (James and Stein, 1961) is shown to dominate the max-

imum likelihood estimator in exact normal sampling. Hansen (2014a) considers local asymptotic

analysis of the JS-type averaging estimator in general parametric models and substantially extends

its application in econometrics. The present paper focuses on the uniformity issue and studies

the Stein�s phenomenon in non-Gaussian semiparametric nonlinear models. The weight we suggest

is di¤erent from a JS-type extension for semiparametric models. We �nd the suggested weight

compares favorably to the latter in �nite-sample experiments.

For moments constructed by instrumental variables (IVs), the misspeci�cation may come from

two sources. One is additional IVs whose validity is questionable. The other is the set of endoge-

nous variables, where a Hausman test (Hausman, 1978) is widely applied to check whether they

are actually exogenous. Recently, Hansen (2014b) and DiTraglia (2014) both consider averaging

estimators that combine the ordinary least squares (OLS) estimator and the two-stage-least-squares

(2SLS) estimator in linear IV models. In linear IV models with homoskedastic errors, our conserv-

ative estimator becomes the 2SLS estimator, and our aggressive estimator using both the IVs and

the endogenous variables becomes the OLS estimator3. However, when applied to linear IV models,

the averaging weight we considered is di¤erent from those in Hansen (2014b) and DiTraglia (2014).

The estimator proposed in this paper is a frequentist model averaging (FMA) estimator. FMA

estimators have received much attention in recent years. Buckland, Burnham, and Augustin (1997)

and Burnham and Anderson (2002) suggest model averaging weights based on the AIC or BIC

scores. Hjort and Claeskens (2003) study the asymptotic distribution and asymptotic risk of the

FMA estimator in locally misspeci�ed parametric models. The results of Hjort and Claeskens (2003)

are extended to the Cox�s proportional hazards models by Hjort and Claeskens (2006), general semi-

parametric models by Claeskens and Carroll (2007), and generalized additive partially linear models

by Zhang and Liang (2011). Hansen (2007, 2008) and Wan et al. (2010) study the FMA estimator

3Consider the linear IV model Yi = X 0
i� + ui with instruments Zi. The aggressive estimator is equivalent to

the OLS estimator because (X 0P[X;Z]X)
�1X 0P[X;Z]Y = (X

0X)�1X 0Y , where Y = (Y1; : : : ; Yn)0, X = (X1; : : : ; Xn)
0,

Z = (Z1; : : : ; Zn)
0 and P[X;Z] = (X;Z) [(X;Z)

0(X;Z)]
�1
(X;Z)0 denotes the projection matrix.
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with the Mallows�averaging weight. Liang et al. (2011) introduce a general random weight that

includes smoothed AIC, smoothed BIC, and many other weights as special cases. Hansen and

Racine (2012) investigate the FMA estimator with the cross-validation averaging weight. The

estimator by Hansen and Racine (2012) are extended to time series models by Zhang et al. (2013)

and to quantile regressions by Lu and Su (2015). Cheng and Hansen (2014) study FMA estimators

in factor-augmented regressions. Our paper contributes to this literature by studying the uniform

asymptotic risk of the FMA estimator in moment-based semiparametric models and providing an

asymptotic framework to show uniform dominance.

There is a large literature studying the validity of GMM moment conditions. Many methods

can be applied to detect the validity, including the over-identi�cation tests (see, e.g., Sargan,

1958; Hansen, 1982; and Eichenbaum, Hansen and Singleton 1988), the information criteria (see,

e.g., Andrews, 1999; Andrews and Lu, 2001; Hong, Preston and Shum, 2003), and the penalized

estimation methods (see, e.g., Liao, 2013; Cheng and Liao, 2014; Caner, Han and Lee, 2014;

Kang, Zhang, Cai and Small, 2014). Recently, misspeci�ed moments and their consequences are

considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley, Hansen, and Rossi (2012),

Doko Tchatoka and Dufour (2012), Guggenberger (2012), Nevo and Rosen (2012), and Kolesar,

Chetty, Friedman, Glaeser, Imbens (2014), among others. Moon and Schorfheide (2009) explore

over-identifying moment inequalities to reduce the MSE. This paper contributes to this literature

by providing new uniform results for potentially misspeci�ed semiparametric models.

The rest of the paper is organized as follows. Section 2 introduces the model and the averaging

estimator. Section 3 establishes some general results on the asymptotic risk and the uniform

dominance of one estimator over another. Section 4 de�nes the averaging estimator and uses

the general results in Section 3 to show that the averaging GMM estimator uniformly dominates

the conservative estimator. Section 5 investigates the �nite sample performance of our averaging

estimator in di¤erent simulation experiments. Section 6 applies the averaging estimator to estimate

the human capital production function in a life-cycle labor supply model. Section 7 concludes.

Proofs and technical arguments are given in the Appendix.

2 Model and Averaging Estimator

The observations fWi 2 RdW : i = 1; :::; ng are i.i.d. or stationary with joint distribution F0 2 F :
For some known functions g1(�; �) 2 Rr1 and g�(�; �) 2 Rr� ; we consider estimation of a �nite-

dimensional parameter �0(2 � � Rd�) that satis�es the moment conditions

EF0 [g1(Wi; �0)] = 0r1 (2.1)
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and

EF0 [g
�(Wi; �0)] = �0; (2.2)

where 0r1 denotes the r1 � 1 zero vector, the slackness parameter �0 is unknown and EF [�] denotes
the expectation taken with respect to the DGP F . We assume that the moment conditions in (2.1)

uniquely identify �0 for any F0 2 F . Although a consistent estimator of �0 follows from the moment
conditions in (2.1), it is desirable to explore the information in (2.2) to improve e¢ ciency.

Because �0 is unknown, a data-dependent decision typically is made to switch between the

�conservative�estimator that only uses (2.1), and the �aggressive�estimator that uses the moment

conditions in both (2.1) and (2.2) with �0 imposed to be 0r� . Write

g2(W; �) =

0@ g1(W; �)

g�(W; �)

1A 2 Rr2 : (2.3)

The conservative and aggressive GMM estimators b�1 and b�2 are de�ned by
b�k � argmin

�2�

"
n�1

nX
i=1

gk(Wi; �)

#0
Wk;n

"
n�1

nX
i=1

gk(Wi; �)

#
(2.4)

where Wk;n is a rk � rk optimal weighting matrix for k = 1 and 2.4

Below is a linear IV example to illustrate the notations introduced in the general GMM frame-

work.

Example. Consider the structural equations

Y = X 0
1�1 +X

0
2�2 + u; (2.5)

X1 = �0X2 +�1Z1 +�2Z2 + v; (2.6)

where Y is a scalar response variable, X1 is a vector of endogenous regressors, X2 is a vector of

exogenous regressors, Z1 and Z2 are vectors of IVs, u and v are residual terms. We are interested

in the coe¢ cients � = (�01; �
0
2)
0. The coe¢ cients �j (j = 0; 1; 2) are nuisance parameters. Let F0

denote the joint distribution of W = (Y;X 0
1; X

0
2; Z

0
1; Z

0
2)
0:

In the structural equation (2.5), X1 is endogenous in the sense that each element of EF0 [X1u]
4The optimal weighting matrix is

Wk;n = (n
�1

nX
i=1

gk(Zi; e�1)gk(Zi; e�1)0 � gk;n(Z; e�1)gk;n(Z; e�1)0)�1;
where gk;n(Z; e�1) = n�1

Pn
i=1 gk(Zi;

e�1) and e�1 is a preliminary consistent GMM estimator based on g1(Zi; �) and
the identity weighting matrix.
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is non-zero and X2 is exogenous in the sense that EF0 [X2u] = 0dx2 : To identify �; suppose we have

valid IVs Z1 that satisfy the exogenous condition EF0 [Z1u] = 0dz1 :The number of valid IVs Z1 is

no smaller than the number of endogenous variables X1. We also have additional IVs Z2; but their

validity is uncertain, i.e., EF0 [Z2u] = �0 and �0 may not be a zero vector.

In this example,

g1(W; �) =

0@ (Y �X 0
1�1 �X 0

2�2)X2

(Y �X 0
1�1 �X 0

2�2)Z1

1A (2.7)

and

g�(W; �) =
�
Y1 �X 0

1�1 �X 0
2�2
�
Z2: (2.8)

GMM estimators b�1 and b�2 follow from (2.4). �

Many estimators considered in the literature fall in the class

b�(e!) = (1� e!)b�1 + e!b�2 (2.9)

where e! 2 R could be deterministic or random. By de�nition, b�(0) = b�1 and b�(1) = b�2. A pre-test
estimator takes the form b�(e!�;p), where e!�;p = 1fTn � c�g for some test statistic Tn with the
critical value c� at the signi�cance level �. Post-model selection estimator also follows this binary

decision rule and allows c� to change with the sample size. For averaging estimators, e! typically is
a data-dependent weight that is not restricted to 0 or 1 (see, e.g., Hjort and Claeskens, 2003 and

Hansen, 2007).

Although various data-dependent choices of e! in the literature all aim to improve upon b�1 by
exploring the information in (2.2), it remains to establish an asymptotic framework to show one

estimator dominates the other uniformly. Uniformity is important because e! is data-dependent
and the �nite-sample risk of b�(e!) is sensitive to the degree of misspeci�cation measured by �0. In
a pointwise asymptotic framework where the DGP is �xed as the sample size increases, a pre-test

estimator has smaller asymptotic risk than the conservative estimator b�1. However, it does not
dominates b�1 uniformly over all the DGPs. As such, we �rst establish some general asymptotic
results that enable one to evaluate the uniform asymptotic risk of an estimator and the risk di¤er-

ences between two estimators over a class of distributions. These uniform asymptotic results aim

to provide good approximations to the �nite-sample properties. Then, we propose a new averaging

estimator in (4.10) and show that it uniformly dominates the conservative estimator b�1.
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3 Asymptotic Risk and Risk Di¤erences

Let b� 2 � be the generic notation of an estimator of �0. Let ` (�) : �! R+ [f1g be a generic loss
function. The �nite-sample and asymptotic risks of b� are de�ned as

Rn(b�) � sup
F2F

EF [`(b�)] and AsyR(b�) � lim sup
n!1

Rn(b�); (3.1)

respectively. The asymptotic risk builds the uniformity over F 2 F into the de�nition by taking

supF2F before lim supn!1. This uniform asymptotic risk is di¤erent from a pointwise asymptotic

risk which is either obtained under a �xed DGP or a particular sequence of drifting DGP. It is

comparable to the asymptotic size of a test, which is the limit of the �nite-sample size de�ned as

the supremum of the �nite-sample rejection probabilities.

To compare two estimators b� and e�, we consider the �nite-sample and asymptotic minimal and
maximal risk di¤erence (RD):

RDn(
b�; e�) � inf

F2F
EF [`(b�)� `(e�)]; AsyRD(b�; e�) � lim inf

n!1
RDn;

RDn(b�; e�) � sup
F2F

EF [`(b�)� `(e�)]; AsyRD(b�; e�) � lim sup
n!1

RDn: (3.2)

The objects of interest are the �nite-sample risk di¤erences, approximated by their asymptotic

counterparts. One estimator b� uniformly dominates the other estimator e� if
AsyRD(b�; e�) < 0 and AsyRD(b�; e�) � 0: (3.3)

In (3.1) and (3.2), the uniformity over F 2 F is crucial for the asymptotic results to give a good
approximation to their �nite-sample counterparts. The value of F at which the supremum or the

in�mum are attained often varies with the sample size. Therefore, to determine the asymptotic risk

of an estimator and to show one estimator dominates another, one has to derive the asymptotic

distributions of these estimators under various sequences fFng. In the subsection below, we provide
a su¢ ciently large class of sequences fFng such that the pointwise limits along these sequences can
combine to represent the uniform asymptotic risk and risk di¤erences.5

5The metric on F induces weak convergence of the bivariate distributions (Zi; Zj) for all i; j � 1; such as the
Kolmogorov metric or the Prokhorov metric.
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3.1 A Su¢ cient Class of Sequences

Let �(F ) 2 � be the unique value of � identi�ed by the moments in (2.1), i.e., EF [g1(W; �(F ))] =
0r1 . De�ne

�(F ) � EF [g�(W; �(F ))] ; (3.4)

which measures the slackness of the additional moments for any F . For k = 1 and 2, we de�ne the

Jacobian and the variance-covariance matrices of the moment functions by

Gk(F ) � EF [gk;�(W; �(F ))] ; where gk;�(W; �) �
gk(W; �)

@�0
;


k(F ) � lim
n!1

VarF

"
n�1=2

nX
i=1

gk(Wi; �(F ))

#
: (3.5)

Note that G1(F ) = S1G2(F ) and 
1(F ) = S1
2(F )S01, where S1 is a selector matrix that selects

g1(W; �) out of g2(W; �). For the averaging GMM estimator studied below, let

v(F ) �
�
vec[G2(F )]

0; vech[
2(F )]
0;M2(�;F )

0�0 , (3.6)

where M2(�;F ) � EF [g2(W; �)] is the moment function indexed by � for any F , vec (�) denotes
vectorization, and vech (�) denotes the half vectorization of a symmetric matrix.

Example (Cont.) In the linear IV example, �(F ) = (�1(F ); �2(F )) is the solution to the linear

equations

0r1 = EF [g1(W; �(F ))] = EF

24�Y �X 0
1�1(F )�X 0

2�2(F )
�0@ X2

Z1

1A35 : (3.7)

Given �(F ), �(F ) in this example is de�ned as

�(F ) = EF [g�(W; �(F ))] = EF
��
Y �X 0

1�1(F )�X 0
2�2(F )

�
Z2
�
: (3.8)

As the moment functions are linear in �, Gk(F ) (k = 1; 2) have simple expressions:

G1(F ) = �EF

240@ X2X
0
1 X2X

0
2

Z1X
0
1 Z1X

0
2

1A35 and G2(F ) = �EF
h�

ZX 0
1 ZX 0

2

�i
; (3.9)

where Z = (X 0
2; Z

0
1; Z

0
2)
0. In addition, 
k(F ) and M2(�;F ) are de�ned using the moment functions

g1(W; �), g�(W; �) and �(F ) respectively. �
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We consider sequences of DGPs fFng such that �(Fn) satis�es

(i) n1=2�(Fn)! d 2 Rr� or (ii) jjn1=2�(Fn)jj ! 1: (3.10)

and v(Fn) satis�es

v(Fn)! v0 �
�
vec[G2]

0; vech[
2]
0;M2(�)

0�0 ; (3.11)

where G2 2 Rr2�d� , 
2 2 Rr2�r2 , and M2(�) is a non-random function of �. Case (ii) in (3.10)

includes the intermediate case in which �(Fn) ! 0r� and jjn1=2�(Fn)jj ! 1 as well the case in

which �(Fn) is bounded away from 0r� . We collect the sequences fFng that satisfy (3.10) and (3.11)
into two sets

S(d; v0) �
n
fFng : Fn 2 F ; n1=2�(Fn)! d 2 Rr� and v(Fn)! v0

o
and

S(1; v0) �
n
fFng : Fn 2 F ; jjn1=2�(Fn)jj ! 1 and v(Fn)! v0

o
: (3.12)

The DGPs in S(d; v0) model correct speci�cation and local misspeci�cation up to the magnitude
of n�1=2, whereas the DGPs in S(1; v0) model more severe misspeci�cation, including the conven-
tional global misspeci�cation case where �(Fn) is a �xed non-zero value as well as the intermediate

case where �(Fn) converges to 0r� slower than n�1=2:

In this model, for each sample size n, the true values of F , � and � are denoted as Fn, �n = �(Fn),

and �n = �(Fn), respectively. These true values satisfy the model speci�ed in (2.1) and (2.2) with

the subscript 0 replaced by n. Under fFng, the observations fWn;igni=1 form a triangular array. For
notational simplicity, Wn;i is abbreviated to Wi.

3.2 Representation of the Asymptotic Risk and Asymptotic Risk Di¤erences

Now we show that pointwise results along sequences in (3.12) combine to yield a uniform result.

For two estimators b� and e�, we assume that EFn [`(b�)] and EFn [`(e�)] satisfy the following high-
level assumptions along a sequence fFng: These high-level assumptions are veri�ed below for the
averaging estimator and the pre-test estimator.

Assumption 3.1 The following results hold under fFng:
(i) If fFng 2 S(d; v0) for d 2 Rr

�
;

lim
n!1

EFn [`(b�)] = R(d; v0) 2 R+ and lim
n!1

EFn [`(e�)] = eR(d; v0) 2 R+:
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(ii) If fFng 2 S(1; v0);

lim
n!1

EFn [`(b�)] = R(1; v0) 2 R+ [ f1g and lim
n!1

EFn [`(e�)] = eR(1; v0) 2 R+ [ f1g:
Assumption 3.1 considers the pointwise limit of the �nite-sample risk along fFng. The key

requirement is that the limit of the �nite-sample risk under fFng does not depend on the limit of
Fn directly. Instead, it depends on the limits of n1=2�(Fn) and v(Fn). Moreover, for any sequence

fFng 2 S(d; v0), the limit of the �nite-sample risk must be the same, indexed by (d; v0). The same
requirement applies to a sequence fFng 2 S(1; v0).

When e� is the conservative estimator, we can write eR(v0) = eR(d; v0) = eR(1; v0) because its
asymptotic risk dose not depend on the degree of misspeci�cation.

Let � = f(�(F ); v(F )) : F 2 Fg. The following assumption provides a set of regularity assump-
tions on the set F on which we build the uniform results.

Assumption 3.2 (i) VF = fv(F ) : F 2 Fg is a compact set.
(ii) �(F1) = 0 for some F1 2 F and �(F2) 6= 0 for some F2 2 F .
(iii) For some " > 0, if jj�jj < " and (�; v) 2 � then (a�; v) 2 � 8a 2 (0; 1].

Assumption 3.2(i) requires that the image of v(F ) is a compact set. Assumption 3.2(ii) states

that the parameter space contains both correctly speci�ed models and misspeci�ed models. As-

sumption 3.2(iii) states that the space F includes some continuous perturbations from a correctly

speci�ed model.

For sequences in (3.12), we de�ne parameter spaces:

HR � f(d; v0) : there exists some sequence fFng 2 S(d; v0)g;

H1 � fv0 : there exists some sequence fFng 2 S(1; v0)g: (3.13)

The set HR corresponds to the correctly speci�ed and �mildly�misspeci�ed models. The set H1

corresponds to the �severely�misspeci�ed models.

Theorem 3.1 Suppose Assumptions 3.1 and 3.2 hold. Then:

(a) The asymptotic risk satis�es

AsyR(b�) = max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
:

10



(b) The asymptotic minimal and maximal risk di¤erences satisfy

AsyRD(b�; e�)=min� inf
(d;v0)2HR

h
R(d; v0)� eR(d; v0)i ; inf

v02H1

h
R(1; v0)� eR(1; v0)i� ;

AsyRD(b�; e�)=max( sup
(d;v0)2HR

h
R(d; v0)� eR(d; v0)i ; sup

v02H1

h
R(1; v0)� eR(1; v0)i) :

Comment 3.1 Theorem 3.1 links the uniform asymptotic risk and risk di¤erences with the point-

wise limits of EFn [`(b�)] and EFn [`(e�)] under the sequences considered in Assumption 3.1. It shows
that the sequences in S(d; v0) and S(1; v0) form a su¢ cient class to study the uniform asymptotic

risk and asymptotic risk di¤erences. This class is larger than the class of convergent sequences that

satisfy Fn ! F0 for some F0 2 F . Theorem 3.1 is proved by the techniques used to establish the

asymptotic size of non-standard tests, see Andrews and Guggenberger (2010), Andrews, Cheng,

and Guggenberger (2011), and Andrews and Cheng (2012).6

Comment 3.2 The two estimators b� and e� are compared under all DGPs in F to establish

uniform dominance in the sense of (3.3). The smallest and largest di¤erences between their risks

are approximated by AsyRD(b�; e�) and AsyRD(b�; e�), respectively. They are di¤erent from what

one would obtain by simply comparing the individual asymptotic risks of the two estimators.

Comment 3.3 Theorem 3.1 also applies to other non-standard estimation problems where the

asymptotic distribution is discontinuous at parts of the parameter space. It is key to verify As-

sumption 3.1 after specifying �(F ) and v(F ):

3.3 Asymptotic Risk with Truncation

The high-level conditions in Assumption 3.1 typically are veri�ed by �rst obtaining the asymptotic

distribution of b� and e� under fFng, then taking expectations of the limits by assuming uniform
integrability. If uniform integrability is not a reasonable assumption, one may consider the trun-

cated loss function `�(b�) � minf`(b�); �g for some � 2 R+ following Hansen (2014a) and generalize
the asymptotic risk to

AsyR�(b�) � lim
�!1

lim sup
n!1

sup
F2F

EF [`�(b�)]: (3.14)

In this case, Assumption 3.1 can be replaced by Assumption 3.3 below.

Assumption 3.3 The following results hold under fFng.
6 In an uncirculated working paper, Andrews and Guggenberger (2006) also considered the asymptotic risk repre-

sentation of a non-standard estimator.
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(i) If fFng 2 S(d; v0) for d 2 Rr
�
, then for any � 2 R+ :

lim
n!1

EFn [`�(b�)] = R�(d; v0) 2 R+ and lim
n!1

EFn [`�(e�)] = eR�(d; v0) 2 R+:
(ii) If fFng 2 S(1; v0); then for any � 2 R+ :

lim
n!1

EFn [`�(b�)] = R�(1; v0) 2 R+ and lim
n!1

EFn [`�(e�)] = eR�(1; v0) 2 R+:
For the truncated loss, the asymptotic minimal and maximal risk di¤erences are generalized to

AsyRD�(b�; e�) � lim
�!1

lim inf
n!1

inf
F2F

EF [`�(b�)� `�(e�)];
AsyRD

�
(b�; e�) � lim

�!1
lim sup
n!1

sup
F2F

EF [`�(b�)� `�(e�)]: (3.15)

Corollary 3.2 Suppose Assumptions 3.2 and 3.3 hold.

(a) The asymptotic risk satis�es

AsyR�(b�)= lim
�!1

AsyR��(
b�); where

AsyR��(
b�)�max( sup

(d;v0)2HR
R�(d; v0); sup

v02H1
R�(1; v0)

)
2 R+ [ f1g:

(b) The asymptotic minimal and maximal risk di¤erences satisfy

AsyRD�(b�; e�)= lim
�!1

AsyRD��(
b�; e�) and

AsyRD
�
(b�; e�)= lim

�!1
AsyRD

�
�(
b�; e�), where

AsyRD��(
b�; e�)�min� inf

(d;v0)2HR

h
R�(d; v0)� eR�(d; v0)i ; inf

v02H1

h
R�(1; v0)� eR�(1; v0)i� ;

AsyRD
�
�(
b�; e�)�max( sup

(d;v0)2HR

h
R�(d; v0)� eR�(d; v0)i ; sup

v02H1

h
R�(1; v0)� eR�(1; v0)i

)
:

Comment 3.4 In the formula of AsyR�(b�) in part (a), the supremum is taken before � ! 1
to control the truncation e¤ect uniformly over the parameter space. The order of supremum and

� !1 should not be switched. Similarly, when comparing two estimators in part (b), we take into

account the truncation e¤ect on both estimators uniformly over the parameter space.
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4 Averaging GMM Estimator

In this section, we propose an averaging estimator and use the asymptotic risk di¤erence representa-

tion in Section 3 to show it uniformly dominates the conservative estimator. To verify the high-level

conditions in Assumption 3.1 or Assumption 3.3, we provide primitive regularity assumptions on

the moment conditions and derive pointwise asymptotic properties of the averaging estimator along

the sequences speci�ed in (3.12).

To introduce this averaging estimator, we �rst study the asymptotic properties of the conserv-

ative and the aggressive GMM estimators under di¤erent sequences of DGPs.

4.1 Asymptotic Properties of the GMM Estimator under Misspeci�cation

For the aggressive GMM estimator b�2, the population criterion function is
QF (�) � EF [g2(Wi; �)]

0
�12 (F )EF [g2(Wi; �)]: (4.1)

Let ��(F ) denote the pseudo-true value that minimizes QF (�) over � 2 �. If all moment conditions
are correctly speci�ed, i.e., EF [g2(Wi; �(F )] = 0, this pseudo-true value is equivalent to the true

value, i.e., ��(F ) = �(F ). If some moment conditions in (2.2) are misspeci�ed, they could be

di¤erent. The identi�cation conditions for �(F ) and ��(F ) are speci�ed in Assumption 4.1 below.

Assumption 4.1 (i) For any " > 0, there exists a constant �" > 0 such that 8F 2 F ,

inf
f�2�: k���(F )k�"g

kEF [g1(Wi; �(F ))]k > �";

inf
f�2�: k����(F )k�"g

[QF (�)�QF (��(F ))] > �":

(ii) �(F ) and ��(F ) are both in the interior of � 8F 2 F .

For any matrix A, we use �min(A) and �max(A) to denote the smallest and largest eigenvalues

of A, respectively. Let C denote a generic �nite constant.

Assumption 4.2 (i) EF [sup�2�(jjg2(Wi; �)jj+ jjg2;�(Wi; �)jj)] � C 8F 2 F .
(ii) g2(W; �) is continuously di¤erentiable in � a.s., and its partial derivative g2;�(W; �) satis�es

jEF [g2;�(Wi; �1)� g2;�(Wi; �2)]j � Cjj�1 � �2jj 8�1; �2 2 �;8F 2 F :

(iii) For k = 1 and 2, C�1 � �min(
k(F )) � �max(
k(F )) � C 8F 2 F .
(iv) For k = 1 and 2, C�1 � �min(G0k(F )Gk(F )) � �max(G0k(F )Gk(F )) � C 8F 2 F .
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(v) Wk;n !p 

�1
k under any fFng such that 
k(Fn)! 
k, for k = 1 and 2.

(vi) v(F ) is continuous in F 8F 2 F .

We assume the following uniform law of large numbers, uniform central limit theorem, and

stochastic equicontinuity of the empirical processes for the triangular array of observations. Let

�n(g2(�)) � n�1=2
nX
i=1

(g2(Wi; �)� EFn [g2(Wi; �)]): (4.2)

and let �n � �(Fn).

Assumption 4.3 For any "n ! 0 and under any sequence fFn 2 Fg;
(i) sup�2� jjn�1

Pn
i=1 g2(Wi; �)� EFng2(Wi; �)jj = op(1);

(ii) sup�2� jjn�1
Pn
i=1 g2;�(Wi; �)� EFng2;�(Wi; �)jj = op(1);

(iii) �n(g2(�n))!d N(0;
2) if 
2(Fn)! 
2;

(iv) supf�1;�22�: jj�1��2jj�"ng �n[g2(�1)� g2(�2)] = op(1):

Su¢ cient conditions of Assumption 4.3 for triangular arrays of i.i.d. and strong mixing obser-

vations are available in Assumptions 11.3-11.5 of Andrews and Cheng (2013).

Let Z2 denote a normal random vector with mean zero and variance-covariance matrix 
2.

Recall that S1 is a selector matrix such that Z1 � S1Z2 is the �rst r1 rows of Z2. To describe the
asymptotic distributions of b�1 and b�2, we de�ne

�k � �
�
G0k


�1
k Gk

��1
G0k


�1
k , for k = 1 and 2. (4.3)

Lemma 4.1 Under Assumptions 4.1-4.3, the following results hold under fFng.
(a) If fFng 2 S(d; v0) [ S(1; v0), n1=2(b�1 � �n)!d �1Z1.
(b) If fFng 2 S(d; v0) for some d 2 Rr

�
, n1=2(b�2 � �n) !d �2Zd;2; where Zd;2 = Z2 + d0 and

d0 = (01�r1 ; d
0)0.

(c) If fFng 2 S(1; v0), M2(�)
0
�12 M2(�) has a unique minimizer ��(v0), b�2 !p �

�(v0) and

jn1=2(b�2 � �n)j !p 1.

Comment 4.1 Our results under drifting DGPs complement Hall and Inoue (2003) on the asymp-

totic distribution of b�2 under global misspeci�cation with a �xed DGP.
Comment 4.2 When the moment conditions in (2.2) are severely misspeci�ed, i.e., jjn1=2�(Fn)jj !
1, it is su¢ cient to show that jn1=2(b�2 � �n)j diverges in probability in order to investigate the
asymptotic risk of the averaging GMM estimator. In this case, b�2 is either inconsistent or consistent
but with a convergence rate slower than n�1=2.
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4.2 Non-Random Optimal Weight

In this subsection, we study the asymptotic risk of the averaging GMM estimator with a non-random

weight ! 2 [0; 1]. The sample analog of this non-random optimal weight is used to construct the

averaging estimator proposed in this paper. We consider the weighted quadratic loss function

`(b�) = n(b� � �n)0H(b� � �n); (4.4)

where H is a d� � d� positive semi-de�nite matrix. We next derive the non-random optimal weight

that minimizes the asymptotic risk.

For k = 1 and 2, de�ne

�k(F ) �
�
G0k(F )


�1
k (F )Gk(F )

��1
: (4.5)

If v(Fn)! v0 for v0 de�ned in (3.11), �k is the limit of �k(Fn) given by

�k �
�
G0k


�1
k Gk

��1
: (4.6)

De�ne

Av0 � H (�1 � �2) and Bv0 � (�2 � ��1)
0H (�2 � ��1) ; (4.7)

where ��1 = [�1;0d��r� ] and the subscript v0 indicates that Av0 and Bv0 are matrix-valued functions

of v0. For any v0, the matrix Av0 is positive semi-de�nite following Lemma 2.1 in Cheng and Liao

(2014).

Lemma 4.2 Under Assumptions 4.1-4.3, the following results hold under fFng.
(a) If fFng 2 S(d; v0), `(b�(!))!d �(d;v0)(!), where �(d;v0)(!) is a random variable with

E[�(d;v0)(!)] = tr(H�1)� 2!tr (Av0) + !
2
�
d00Bv0d0 + tr (Av0)

�
8! 2 R.

(b) E[�(d;v0)(!)] is minimized at

!�(d; v0) =
tr (Av0)

d00Bv0d0 + tr (Av0)
for d 2 Rr�, where d0 = (01�r1 ; d0)0.

(c) If fFng 2 S(1; v0), `(b�(!))!p 1 when ! > 0, and `(b�(!))!d Z 01�01H�1Z1 when ! = 0.

Comment 4.2 Although Lemma 4.2 is derived under the weighted quadratic loss function, the

general theory established in the previous section applies to other loss functions as well. The

quadratic loss function is attractive because it produces a non-random optimal weight with an

explicit analytical solution. The averaging estimator proposed in this paper is a sample analog of
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this non-random optimal weight and its analytical form is useful for analyzing the asymptotic risk

of the averaging estimator.

Comment 4.3 The optimal weight in Lemma 4.2(b) is infeasible in practice because it depends

on unknown parameters. One may consider estimating these unknown parameters and plugging

their estimators into the optimal weight formula. The matrices �2, �1, and �2 can be consistently

estimated based on b�1. However, the location parameter d0 is not consistently estimable. As a
result, when d0 is replaced by its sample analog, one has to account for this estimation error when

evaluating the risk of the resulting averaging estimator.

4.3 GMM Averaging Estimator with Empirical Optimal Weight

We propose to use a sample analog of !�(d; v0) to construct the averaging estimator. This sample

analog is called the empirical optimal weight, which takes the form

e!eo = tr
h
H(b�1 � b�2)i

n(b�2 � b�1)0H(b�2 � b�1) + tr hH(b�1 � b�2)i (4.8)

where b�k is a consistent estimator of �k for k = 1 and 2. Lemma 4.1 shows that under a sequence
fFng 2 S(d; v0),

n1=2(b�2 � b�1)!d (�2 � ��1) (Z2 + d0) : (4.9)

The empirical optimal weight e!eo is a sample analog of the non-random optimal weight !�(d; v0)

with (�2 � ��1)d0 replaced by its asymptotically unbiased estimator n1=2(b�2 � b�1), and �k replaced
by its consistent estimator b�k for k = 1; 2. Under a sequence fFng 2 S(1; v0), e!eo !p 0 because

jn1=2(b�2 � b�1)j !p 1, which means that e!eo is asymptotically optimal following Lemma 4.2(c).
The averaging GMM estimator proposed takes the form

b�eo = (1� e!eo)b�1 + e!eob�2: (4.10)

By the consistency of b�k and Lemma 2.1 in Cheng and Liao (2014), we know that tr[H(b�1�b�2)] � 0
with probability approaching 1 (w.p.a.1), which together with the form of e!eo in (4.8) implies thate!eo 2 [0; 1] w.p.a.1.
Assumption 4.4 Under fFng 2 S(d; v0) [ S(1; v0); b�k !p �k for k = 1 and 2:

Next, we de�ne some notations for the asymptotic distribution of the empirical optimal aver-
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aging weight, the averaging GMM estimator, and the loss function:

e!(d;v0) � tr (Av0)

Z 0d;2Bv0Zd;2 + tr (Av0)
;

�(d;v0) � �
�
1Zd;2 + e!(d;vo) (�2 � ��1)Zd;2; �(1;v0) � �1Z1;

�(d;v0) � �
0
(d;v0)

H�(d;v0); �(1;v0) � �
0
(1;v0)H�(1;v0): (4.11)

Lemma 4.3 Under Assumptions 4.1-4.4, we have the following results:

(a) If fFng 2 S(d; v0), e!eo !d e!(d;v0), n1=2(b�eo � �n)!d �(d;v0); and `(b�eo)!d �(d;v0).

(b) If fFng 2 S(1; v0), e!eo !p 0, n1=2(b�eo � �n)!d �(1;v0); and `(b�eo)!d �(1;v0).

Lemma 4.3 shows that e!eo converges to a non-degenerate random variable under fFng 2
S(d; v0). The formula in Lemma 4.2(a) is derived for non-random weight. In consequence, it

cannot be used to justify the averaging estimator b�eo in (4.10) with a random weight. To study the

asymptotic risk of b�eo, it is important to take into account the data-dependent nature of e!eo and
its uniform property under di¤erent degrees of misspeci�cation.

4.4 Uniform Dominance

In this subsection, we show that the averaging GMM estimator based on the empirical optimal

weight uniformly dominates the conservative GMM estimator. Without assuming the estimators

are uniformly integrable, we consider the truncated loss function and show uniform dominance by

applying the general results in Corollary 3.2.7

Lemmas 4.1 and 4.3 imply that the high-level conditions in Assumption 3.3 hold for b� = b�eo
and e� = b�1 with

R�(d; v0) = E
�
minf�(d;v0); �g

�
; R�(1; v0) = E

�
minf�(1;v0); �g

�
;eR�(d; v0) = eR�(1; v0) = E �minf�(1;v0); �g� : (4.12)

To study the maximal and minimal risk di¤erences, we de�ne

g�(d; v0) � E
�
minf�(d;v0); �g

�
� E

�
minf�(1;v0); �g

�
(4.13)

under the truncation value �: As � !1; its limit is

g(d; v0) � E[�(d;v0)]� E
�
�(1;v0)

�
: (4.14)

7Under the assumption of uniform integrability, the uniform dominance results also hold and the arguments are
simpli�ed.
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By the de�nitions of �(d;v0) and �(1;v0) in (4.11), some simple algebra gives

g(d; v0) = E

"
2tr(Av0)Zd;20Dv0Zd;2
Z 0d;2Bv0Zd;2 + tr(Av0)

#
+ E

"
tr(Av0)

2Z 0d;2Bv0Zd;2
(Z 0d;2Bv0Zd;2 + tr(Av0))2

#
; (4.15)

where Av0 and Bv0 are de�ned in (4.7) and Dv0 = (�2���1)0H��1. Note that the formula for g(d; v0)
in (4.15) can be simulated easily for given values of d and v0:

Theorem 4.1 Suppose that Assumptions 3.2 and 4.1-4.4 hold.

(a) The averaging GMM estimator b�eo satis�es
AsyRD�(b�eo; b�1)= lim

�!1
min

�
inf

(d;v0)2HR
[g�(d; v0)] ; 0

�
;

AsyRD
�
(b�eo; b�1)= lim

�!1
max

(
sup

(d;v0)2HR
[g�(d; v0)] ; 0

)
:

(b) For large � 2 R+, we have

inf
(d;v0)2HR

g�(d; v0) � inf
(d;v0)2HR

g(d; v0); sup
(d;v0)2HR

g�(d; v0) � sup
(d;v0)2HR

g(d; v0), and

g(d; v0) � tr(Av0)E
"
4�max(Av0)� tr(Av0)
Z 0d;2Bv0Zd;2 + tr(Av0)

#
� tr(Av0)2E

"
tr(Av0) + 4�max(Av0)

(Z 0d;2Bv0Zd;2 + tr(Av0))2

#
:

(c) If tr(Av0) > 0 and tr(Av0) � 4�max(Av0) 8v0 2 VF , b�eo uniformly dominates b�1; i.e.,
AsyRD�(b�eo; b�1) < 0 and AsyRD�(b�eo; b�1) = 0:

Comments 4.4 Part (a) follows from Corollary 3.2 and the pointwise limits in Lemma 4.3. Part

(b) provides upper bounds for the in�mum and supremum of the truncated risk di¤erence g�(d; v0)

for a large truncated value �. This upper bound is represented by g(d; v0), which has a closed form

representation in (4.15). We derive an analytical upper bound for g(d; v0) using the Stein�s Lemma

in part (b). This analytical upper bound leads to the su¢ cient condition in part (c) for uniform

dominance. It is worth noting that the condition in part (c) is su¢ cient but not necessary.

Comments 4.5 To control the truncation e¤ect uniformly over the parameter space, we cannot

automatically replace g�(d; v0) with g(d; v0) in part (a) by switching the order of inf/sup with

� !1. However, part (b) of the theorem proves that replacing g�(d; v0) with g(d; v0) only provides
higher upper bounds, which can be used to show the uniform dominance results by analyzing the

analytical upper bound for g(d; v0).
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Comments 4.6 Instead of relying on the su¢ cient condition in part (c), we can investigate the

two upper bounds in part (b) inf(d;v0)2HR g(d; v0) and sup(d;v0)2HR g(d; v0) by simulating g(d; v0) in

(4.15). In practice, one can replace v0 by its consistent estimator and plot g(d; v0) as a function

of d. This provides a uniform comparison between the averaging estimator and the conservative

estimator. One can also simulate the asymptotic risk of other non-standard estimators after deriving

their asymptotic distributions like those in Lemma 4.3. As an illustration, we use simulation model

1 in the next section to show the simulated asymptotic risk based on g(d; v0) is close to the �nite-

sample risk for two non-standard estimators. One is the averaging GMM estimator based on e!eo and
the other one is the pre-test GMM estimator based on the over-identi�cation J-test with signi�cance

level 0.01. The asymptotic risk for this pre-test estimator is given by (A.75) in the Appendix. The

�nite sample risks are calculated using 100,000 simulated samples and the asymptotic risks are

simulated by drawing 10,000 normal random vectors with mean zero and variance-covariance b
2
in each simulated sample.8 The simulation results are reported in Figure 1, where the risk of the

conservative estimator is normalized to be 1 in all cases.9 It is clear that the �nite sample risk

and the simulated asymptotic risk are fairly close and the averaging GMM estimator uniformly

dominates the conservatives estimator while the pre-test estimator does not.

5 Simulation Studies

In this section, we investigate the �nite sample performance of our averaging GMM estimator in

linear IV models. In addition to the empirical optimal weight e!eo, we consider two other averaging
estimators based on the JS type of weights. The �rst one is based on the positive part of the JS

weight10:

!P;JS = 1�
 
1� tr( bAv0)� 2�max( bAv0)

n(b�2 � b�1)0H(b�2 � b�1)
!
+

(5.1)

where (x)+ = max f0; xg and bAv0 is the estimator of Av0 using b�1. The second one uses the restricted
JS weight

!R;JS = (!P;JS)+ : (5.2)

By construction, !P;JS � 1 and 0 � !R;JS � 1. We compare the �nite-sample risks of these three
averaging estimators, the conservative GMM estimator b�1, and the pre-test GMM estimator based

on the J-test. The �nite-sample risk of the conservative GMM estimator is normalized to be 1.

8No truncation is applied to the �nite-sample risk.
9The �nite-sample and simulated asymptotic risk of the averaging GMM estimator are represented by �GMMA-

FRisk� and �GMMA-SRisk�, respectively. The �nite-sample and simulated asymptotic risk of the pre-test GMM
estimator are represented by �GMMP-FRisk�and �GMMP-SRisk�, respectively.
10This formula is a GMM analog of the generalized JS type shrinkage estimator in Hansen (2014a) for parametric

models. The shrinkage scalar � is set to tr( bAv0)� 2�max(tr( bAv0)) in a fashion similar to the original JS estimator.
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Figure 1. The Finite Sample Risk and the Simulated Asymptotic Risk

In Theorem 4.1(c), we derive a su¢ cient condition for the uniform dominance: tr(Av0) �
4�max(Av0). When this condition is not satis�ed, however, it is still possible that our averaging

GMM estimator has a smaller risk than the conservative GMM estimator. Therefore we consider

three models in simulation studies. In the �rst model, tr(Av0) � 4�max(Av0) and hence the su¢ -
cient condition in Theorem 4.1(c) is satis�ed. In the second and the third models, 2�max(Av0) <

tr(Av0) < 4�max(Av0) and tr(Av0) < 2�max(Av0); respectively, which means that the su¢ cient

condition in Theorem 4.1(c) does not hold.11 In each model, we consider four sample sizes,

n = 250; 500; 1000; 2500, and use 100,000 simulation repetitions.

5.1 Simulation in Model 1

Our �rst simulation model is

Yi =
6X
j=1

�jXj;i + �i; (5.3)

11We di¤erentiate these two cases for a thorough comparison with the JS-type estimators, where the value of
tr(Av0)� 2�max(tr(Av0)) is important.
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where Xj;i are generated by

Xj;i = �j(Zj;i + Zj+6;i) + Zj+12;i + uj;i for j = 1; :::; 6: (5.4)

We draw i.i.d. random vectors (Z1;i; :::; Z18;i; u1;i; :::; u6;i; �i)0 from normal distributions with mean

zero and variance-covariance matrix diag(I18�18;�7�7), where

�7�7 =

0@ I6�6 0:25� 16�1
0:25� 11�6 1

1A : (5.5)

We set (�1; :::; �6) = 2:5 � 11�6 and (�1; :::; �6) = 0:5 � 11�6. The observed data are Wi =

(Yi; X1;i; :::; X6;i; Z1;i; :::; Z12;i; ~Z13;i; :::; ~Z18;i)
0; where

~Zj;i = Zj;i + n
�1=2dj�i, for j = 13; :::; 18: (5.6)

In the main regression equation (5.3), all regressors are endogenous because E(Xj;i�i) = 0:25 for

j = 1; :::; 6. The instruments (Z1;i; :::; Z12;i)0 are valid and ( ~Z13;i; :::; ~Z18;i)0 are misspeci�ed because

E( ~Zj;i�i) = n�1=2dj for j = 13; :::; 18. In the simulation studies, we consider (d13; :::; d18) = d�11�6
where d is a scalar that takes values on the grid points between 0 and 20 with the grid length 0:1.

Figure 2. Finite Sample Risks of the Averaging Estimators in Model 1

21



Figure 2 presents the MSEs of all 6 parameters in (5.3). In all �gures, �Pre-test(0.10)�and

�Pre-test(0.01)�refer to the pre-test GMM estimators based on the J-test with nominal size 0.10

and 0.01, respectively; �Plug-opt�refers to the averaging GMM estimator based on the empirical

optimal weight e!eo; �Posi-JS�and �ReSt-JS�refer to the averaging estimators based on the positive
part of the JS weight and the restricted JS weight, respectively.12

Our �ndings in model 1 are summarized as follows. First, the GMM averaging estimators have

smaller MSE than b�1 uniformly over d, which is predicted by our theory because the key su¢ cient
condition is satis�ed in this model. Second, the pre-test GMM estimators do not dominate the

conservative GMM estimator. When the location parameter d is close to zero, the pre-test GMM

estimators have relative MSEs as low as 0.4. However, their relative MSEs are above 1 when d

is around 5. Third, the pre-test GMM estimators associated with di¤erent nominal sizes display

di¤erent behaviors. The smaller the size of the over-identi�cation test is, the larger the supremum

of the risk is. Fourth, among the three averaging estimators, the one based on e!eo has the smallest
MSE. The positive JS averaging estimator and the restricted JS averaging estimator have almost

identical �nite-sample MSE even when the sample size is small, e.g., n = 250. Fifth, it is interesting

to see that as the sample size grows, the �nite sample MSEs of the positive and restricted JS

averaging estimators converge to that of the averaging estimator based on e!eo.
5.2 Simulation in Model 2

The second model is

Yi =
6X
j=1

�jXj;i + �i; (5.7)

where X1;i, X2;i and X3;i are exogenous variables generated by

X1;i = 3
� 1
2 (Z1;i +Z2;i +Z4;i); X2;i = 3

� 1
2 (Z2;i +Z3;i +Z6;i); X3;i = 3

� 1
2 (Z3;i +Z1;i +Z8;i); (5.8)

and Xj;i (j = 4; 5; 6) are generated by

Xj;i = �j(Zj;i + Zj+3;i) + Zj+6;i + uj;i for j = 4; 5; 6: (5.9)

We draw i.i.d. random vectors (Z1;i; :::; Z12;i; u4;i; :::; u6;i; �i)0 from normal distributions with mean

zero and variance-covariance matrix diag(I12�12;�4�4), where

�4�4 =

0@ I3�3 0:25� 13�1
0:25� 11�3 1

1A : (5.10)

12The same notations are used in Figures 3-8.
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The observed data are Wi = (Yi; X1;i; :::; X6;i; Z4;i; :::; Z9;i; ~Z4;i; :::; ~Z6;i)
0, where

~Zj;i = Zj+6;i + n
�1=2dj�i for j = 4; 5; 6: (5.11)

We set (�1; :::; �6) = 2:5 � 11�6 and (�4; :::; �6) = 0:5 � 11�3. In this model, Xj;i (j = 4; 5; 6) are

endogenous regressors, (Z4;i; :::; Z9;i)0 are valid IVs, and ( ~Z4;i; :::; ~Z6;i)0 are misspeci�ed IVs. In the

simulation, we consider (d4; :::; d6) = d � 11�3 where d is a scalar that takes values on the grid
points between 0 and 20 with grid length 0:1.

Figure 3. Finite Sample Risks of Averaging Estimators in Model 2

The simulation results in model 2 are depicted in Figures 3, 4 and 5. Figure 3 presents the

MSEs of all 6 parameters in (5.7). Figure 4 contains the MSEs of the estimators of (�4; �5; �6)0, the

coe¢ cients of the endogenous regressors in the main equation (5.7). Figure 5 provides the MSEs

of the estimators of (�1; �2; �3)0; the coe¢ cients of the exogenous regressors in the main equation

(5.7).

Our �ndings in Figure 3 are summarized as follows. First, even though the su¢ cient condition

in Theorem 4.1(c) is not satis�ed, the averaging estimator based on e!eo has a smaller MSE thanb�1 uniformly over d. Moreover, its MSE is much smaller than that of the other two averaging

estimators. Second, the properties of the pre-test estimators are similar to those in model 1. That
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Figure 4. Finite Sample Risks of the Averaging Estimators in Model 2 �Endogenous Subvector

is, they do not dominate the conservative estimator and the behavior changes with the nominal

size of the test. Third, the averaging estimator using !P;JS has a larger MSE than b�1 when the
location parameter d is close to zero and the sample size is small (e.g., n = 250 and 500). When

the sample size becomes large (e.g., n = 1000 and 2500), its MSE dominates b�1 uniformly over d.
Fourth, the averaging estimator using !R;JS dominates b�1 uniformly over d in all the sample sizes
we considered. Fifth, with the growth of the sample size, the �nite sample MSE of the averaging

estimator using !P;JS converges to that of the averaging estimator using !R;JS . Moreover, the �nite

sample MSEs of these two averaging estimators converge to that of the GMM averaging estimator

based on e!eo.
In Figures 4 and 5, the averaging estimators based on e!eo and !R;JS both uniformly dominateb�1 and the former is better than the latter. In particular, for the coe¢ cients of the exogenous

regressors (�1; �2; �3)0; the averaging estimator based on e!eo demonstrates a substantial advantage
uniformly over d:
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Figure 5. Finite Sample Risks of the Averaging Estimators in Model 2 �Exogenous Subvector

5.3 Simulation in Model 3

The third simulation model is

Yi =
6X
j=1

�jXj;i + �i; (5.12)

where Xj;i (j = 1; :::; 5) are exogenous variables generated by

Xj;i = 3
� 1
2 (Zj;i + Zj+1;i + Zj+8;i); for j = 1; :::; 4;

X5;i = 3
� 1
2 (Z5;i + Z1;i + Z13;i); (5.13)

and X6;i is generated by

X6;i =

8X
j=6

�jZj;i +

13X
j=9

Zj;i + u6;i . (5.14)
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We draw i.i.d. random vectors (Z1;i; :::; Z13;i; u6;i; �i)0 from normal distributions with mean zero and

variance-covariance matrix diag(I13�13;�2�2), where

�2�2 =

0@ 1 0:25� 12�1
0:25� 11�2 1

1A : (5.15)

The observed data are Wi = (Yi; X1;i; :::; X6;i; Z6;i; :::; Z8;i; ~Z9;i; :::; ~Z13;i)
0, where

~Zj;i = Zj;i + n
�1=2dj�i for j = 9; :::; 13: (5.16)

We set (�1; :::; �6) = 2:5 � 11�6 and (�6; :::; �8) = 0:5 � 11�3. In this model, X6;i is an endoge-
nous regressor, (Z6;i; :::; Z8;i)0 are valid IVs, and ( ~Z9;i; :::; ~Z13;i)0 are misspeci�ed IVs. We consider

(d9; :::; d13) = d � 11�5 where d is a scalar that takes values on the grid points between 0 and 20
with grid length 0:1.

Figure 6. Finite Sample Risks of the Averaging Estimators in Model 3

The simulation results in model 3 are depicted in Figures 6, 7, and 8. Figure 6 presents the MSEs

of all 6 parameters in (5.12). Figure 7 shows the MSEs of the estimators of �6; the coe¢ cient of the

endogenous regressor in the main equation (5.12). Figure 8 provides the MSEs of the estimators of
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(�1; :::; �5)
0; the coe¢ cients of the exogenous regressors in the main equation (5.7).

Our �ndings in Figure 6 are summarized as follows. First, the properties of the pre-test esti-

mators are very similar to those in models 1 and 2. Second, the MSEs of the averaging estimators

based on !P;JS and !R;JS becomes identical to that of b�1. Third, the averaging estimator based
on e!eo does not dominate b�1. It has much smaller MSE when d is close to zero, while its MSE is
in�ated slightly above that of b�1 when d moves away from zero, and then converges to 1.

Figure 7. Finite Sample Risks of the Averaging Estimators in Model 3 �Endogenous Subvector

Comparing the results in Figures 7 and 8, we see that pre-testing and model averaging have

stronger e¤ect on the coe¢ cient of the endogenous regressor. In Figures 7 and 8, the averaging

estimators based on !R;JS and !P;JS are almost identical to b�1 for all sample sizes considered.
Finally, for �6; the averaging estimator based on e!eo does not dominate b�1, although its MSE is
only in�ated slightly for d around 3. On the other hand, for (�1; :::; �5)0, the averaging estimator

based on e!eo dominates b�1 when the sample size is small (e.g., n = 250; 500; 1000). Its MSE is

slightly in�ated when d is around 3 and the sample size is large (e.g., n = 2500).
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Figure 8. Finite Sample Risks of the Averaging Estimators in Model 3 �Exogenous Subvector

6 An Empirical Application

One important issue in the empirical analysis of life cycle labor supply is to estimate the individual

human capital production function. The knowledge about the human capital function allows re-

searchers to estimate the household�s utility function, and hence to evaluate how changes in policies,

such as tax reduction, a¤ect consumption, labor market outcomes, and welfare (see, e.g., Heckman,

1976; Shaw, 1989; and Imai and Keane, 2004). This section applies the averaging GMM to estimate

the human capital production function.

We follow the literature (see, e.g., Shaw, 1989) to specify the human capital production function

as a quadratic function of ki;t, log of the human capital stock Ki;t, and hi;t, log of the hours of work

Hi;t:

f(ki;t; hi;t; �) = 1hi;t + 2h
2
i;t + 3hi;tki;t + 4ki;t + 5k

2
i;t; (6.1)

where � = (1; : : : ; 5) are unknown parameters. Denote the regressors by

Xi;t =
�
hi;t; h

2
i;t; hi;tki;t; ki;t; k

2
i;t

�0
: (6.2)
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The log human capital stock ki;t is accumulated through the equation

ki;t+1 = f(ki;t; hi;t; �) + "i;t (6.3)

where "i;t = �i + ui;t is the unobservable residual term that contains an individual heterogeneity

component �i and a random shock ui;t. To avoid unnecessary complications, we follow Shaw (1989)

to specify the real wage as wi;t = Ri;tKi;t, and follow Hokayem and Ziliak (2014) to assume Ri;t = 1

for all i and all t.13

We use the same data set as in Hokayem and Ziliak (2014) from the Panel Study of Income

Dynamics (PSID). The sample includes biennial observations for 1654 men from 1999 to 2009. We

further narrow the sample to individuals with at least three consecutive periods of observations,

which gives us a data set with 5774 individual-year observations.

To eliminate the individual e¤ect, we take �rst di¤erence on equation (6.3):

�ki;t+1 = �f(ki;t; hi;t; �) + �ui;t (6.4)

where "�" denotes the �rst order di¤erence operator. The unknown parameter � can be estimated

by GMM estimator b�1 with the moment functions
g1(�ki;t+1;�Xi;t; Z1;t; �) = [�ki;t+1 ��f(ki;t; hi;t; �)]
 Z1;t (6.5)

where Z1;t = (X 0
i;t�1; Z

0
�;t) is a set of IVs including Xi;t�1 and

Z�;t =
�
ci;t�1, c2i;t�1, ci;t�1li;t�1, li;t�1, l

2
i;t�1

�0
; (6.6)

where ci;t�1 = logCi;t�1, li;t�1 = logLi;t�1, and Ci;t�1 and Li;t�1 are, respectively, the consumption

and leisure of individual i at period t�1. The lagged consumption and leisure variables are included
to provide extra identi�cation restrictions for the human capital function.

In equation (6.4), the regressors �Xi;t may be endogenous because: (i) ki;t is correlated with

ui;t�1 and hence �ui;t in view of equation (6.3); and (ii) hi;t is partly determined by ki;t through the

individual�s labor decision. As a result, the LS estimator based on the following moment function

g�(�ki;t+1;�Xi;t; �) = [�ki;t+1 ��f(ki;t; hi;t; �)]
�Xi;t (6.7)

may be inconsistent. The aggressive GMM estimator b�2 is constructed using the moment conditions
in both (6.5) and (6.7).

13Another way to think of this speci�cation is to use real wage rate wt as a proxy for the human capital stock Kt.
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Table 1. Estimator of Human Capital Production Function

1 2 3 4 5 J-testb�1 0.0236 -0.0070 0.0310 0.0656 -0.0381 0.8427
(0.0571) (0.0444) (0.0626) (0.0621) (0.0447) � �b�2 0.0009 0.0265 -0.0113 -0.2232 -0.0925 0
(0.0328) (0.0240) (0.0496) (0.0529) (0.0247) � �

(i) Numbers in the brackets are the standard errors; (ii) Numbers in the last column are the p-values of the J-tests;
(iii) GMM estimators are based on the sample from PSID in year 2003, 2005, 2007 and 2009; (iv) Four year dummy
variables are included in the moment functions and they are used as their own IVs in the GMM estimation.

Table 1 reports the estimation results on the conservative and the aggressive estimators. The

conservative and aggressive GMM estimators of � di¤er substantially. The J-test strongly rejects the

validities of the moment conditions in (6.7), while it supports the validities of the moment conditions

in (6.5). On the other hand, the aggressive GMM estimator b�2 has much smaller standard error
than the conservative estimator b�1.

Next, we consider the averaging GMM estimator under the quadratic loss function withH = Id� .

The empirical weight e!eo on the aggressive GMM estimator is 0:0770. It is interesting that the

averaging estimator assigns nontrivial weight to b�2, even though the J-test indicates misspeci�cation
of the moment conditions in (6.7).

To evaluate the performance of the averaging GMM estimator, we simulate its asymptotic risk

following the formula in (4.15). This exercise is the same as that for Figure 1, which shows that this

simulated asymptotic risk is a good approximation to the �nite-sample risk. As there are 5 moment

conditions in (6.7), the risk of the averaging GMM estimator is a function of a 5-dimensional vector

of location parameters d = (d1; d2; d3; d4; d5) 2 R5: We parameterize it as

d1 =
p
r cos�1;

d2 =
p
r sin�1 sin�2 sin�3; d3 =

p
r sin�1 sin�2 cos�3;

d4 =
p
r sin�1 cos�2 sin�4; d5 =

p
r sin�1 cos�2 cos�4 (6.8)

for some r 2 [0;+1) and �1; �2; �3; �4 2 [0; 2�] such that
P5
k=1 d

2
k = r: To simulate the risk, we

consider 1001 equally spaced grid points for r between 0 and 100, and for each grid point of r,

we consider 30 equally spaced grid points for �1, �2, �3 and �4, respectively, between 0 and 2�

(starting at 0). For each grid point of r, this gives 304 values for the simulated risk and we record

the minimum and maximum values. As in the Monte Carlo simulation studies, the risk of the

conservative GMM estimator is normalized to be 1.

The minimum and maximum risks for each grid point of r are depicted in Figure 9. Figure

9 shows that the averaging GMM estimator b�eo compares favorably to the conservative GMM
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Figure 9. Simulated Asymptotic Risk of the Averaging Estimator
of the Human Capital Function

estimator b�1. The risk of b�eo is around 1.02 in the least favorable case and is around 0.66 in the
most favorable case. As r goes to 100, the maximum and the minimum risks both converge to 1.

7 Conclusion

This paper studies the asymptotic risk of the averaging GMM estimator that combines the conser-

vative estimator and the aggressive estimator with a data-dependent weight. The averaging weight

is the sample analog of an optimal non-random weight. We provide a su¢ cient class of drifting

DGPs under which the pointwise asymptotic results combine to yield uniform approximations to

the �nite-sample risk and risk di¤erences. Using this asymptotic approximation, we show that the

proposed averaging GMM estimator uniformly dominates the conservative GMM estimator.

Inference based on the averaging estimator is an interesting and challenging problem. In addition

to the uniform validity, a desirable con�dence set should have smaller volume than that obtained

from the conservative moments alone. We leave the inference issue to future investigation.
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A Appendix

A.1 Proofs for the general asymptotic risk results

Proof of Theorem 3.1. The proof uses the subsequence techniques used to show the asymptotic
size of a test in Andrews, Cheng, and Guggenberger (2011). We �rst show that

AsyR(b�) � max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
: (A.1)

Let fFng be a sequence such that

lim sup
n!1

EFn [`(b�)] = lim sup
n!1

�
sup
F2F

EF [`(b�)]� = AsyR(b�): (A.2)

Such a sequence always exists by the de�nition of supremum. The sequence fEFn [`(b�)] : n � 1g
may not converge. Now let fwn : n � 1g be a subsequence of fng such that fEFwn [`(b�)] : n � 1g
converges and its limit equals AsyR(b�): Such a subsequence always exists by the de�nition of limsup.
Below we show that there exists a subsequence fpng of fwng such that

EFpn [`(b�)]! R(d; v0) for some (d; v0) 2 HR (A.3)

or
EFpn [`(b�)]! R(1; v0) for some v0 2 H1: (A.4)

Provided (A.3) or (A.4) holds, we obtain the desired result in (A.1).
To show that there exists a subsequence fpng of fwng such that either (A.3) or (A.4) holds, it

su¢ ces to show claims (1) and (2): (1) for any sequence fFng and any subsequence fwng of fng,
there exists a subsequence fpng of fwng for which

p1=2n �(Fpn)! d 2 Rr� and v(Fpn)! v0 for some (d; v0) 2 HR (A.5)

or p1=2n �(Fpn)
!1 and v(Fpn)! v0 for some v0 such that v0 2 H1; (A.6)

and (2) for any subsequence fpng of fng and any sequence fFpn : n � 1g, (A.5) together with
Assumption 3.1(i) implies (A.3), and (A.6) combined with Assumption 3.1(ii) implies (A.4).

To show (1), let �wn;j denote the j-th component of �(Fwn) and p1;n = wn 8n � 1. For j = 1,
either (i) lim supn!1 jp

1=2
j;n �pj;n;j j < 1 or (ii) lim supn!1 jp

1=2
j;n �pj;n;j j = 1. If (i) holds, then for

some subsequence fpj+1;ng of fpj;ng, p1=2j+1;n�pj+1;n;j ! dj for some dj 2 R. If (ii) holds, then for
some subsequence fpj+1;ng of fpj;ng, p1=2j+1;n�pj+1;n;j !1 or �1. As r� is a �xed positive integer,
we can apply the same arguments successively for j = 1; :::; r� to obtain a subsequence fp�ng of
fwng such that (p�n)1=2�p�n ! d� 2 Rr� or (p�n)1=2jj�p�n jj ! 1. Finally, there exists a subsequence
fpng of fp�ng such that v(Fpn)! v� because fv(F ) : F 2 Fg is a compact set by Assumption 3.2.

We have constructed the subsequence fpng of fng such that either (i) (pn)1=2�pn ! d� 2 Rr�
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and v(Fpn)! v�; or (ii) (pn)1=2jj�pn jj ! 1 and v(Fpn)! v�. To conclude (A.5) holds in case (i),
it remains to show (d�; v�) 2 HR in case (i). Similarly, to show (A.6) holds in case (ii), it remains
to show v� 2 H1. This step is necessary because d� and v� are the limits along a subsequence,
whereas HR and H1 are de�ned using limits of the full sequence. To close this gap, we show that
for the subsequence fpng constructed above there exists a full sequence with the same limit. For
case (i), such a full sequence of DGP fF �k 2 F : k � 1g can be constructed as follows. First,
consider the case where d� 2 Rr� . (i) 8k = pn; de�ne F �k = Fpn and (ii) 8k 2 (pn; pn+1), de�ne F �k
to be a true distribution such that

�(F �k ) = (pn=k)
1=2�pn and v(F

�
k ) = v(Fpn): (A.7)

There exists F �k 2 F for which (A.7) holds for large n by Assumption 3.2(iii). To see it, we �rst
note that (�(Fpn); v(Fpn)) 2 � because Fpn 2 F . Moreover, we have pn=k < 1, and jj�pn jj < " for
large n because �pn ! 0r� . Hence Assumption 3.2(iii) holds, which ensures the existence of F �k for
any k 2 (pn; pn+1). Along this constructed sequence fF �k 2 F : k � 1g, we have k1=2�(F �k ) ! d�

and v(F �k ) ! v� as desired. This shows that (d�; v�) 2 HR in case (i). For case (ii), de�ne
F �k = Fpn for k 2 [pn; pn+1). Then, k1=2jj�(F �k )jj � (pn)1=2jj�pn jj 8k 2 [pn; pn+1). In consequence,
(pn)

1=2jj�pn jj ! 1 as n ! 1 implies that k1=2jj�(F �k )jj ! 1 as k ! 1. In addition, v(F �k ) ! v�

as k ! 1. Hence, in case (ii), v� 2 H1. Combined the results for case (i) and (ii), we have
completed the proof of (1).

To show (2), note that we have proved that for any subsequence fpng of fng and any sequence
fFpn : n � 1g such that (A.5) holds, there exists a full sequence fF �k 2 F : k � 1g such that
n1=2�(F �k ) ! d� 2 Rr� , v(F �n) ! v�, and F �pn = Fpn 8n � 1. Similarly, if (A.6) holds, there exists
a full sequence fF �k 2 F : k � 1g such that n1=2�(F �k ) ! 1, v(F �n) ! v�, and F �pn = Fpn 8n � 1.
This together with Assumption 3.1(i) and (ii) implies (2). This proves either (A.3) or (A.4) holds,
which in turn implies (A.1).

Next, we show that

AsyR(b�) � max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
: (A.8)

For any (d; v0) 2 HR, there exists a sequence fFn 2 F : n � 1g such that n1=2�(Fn) ! d and
v(Fn)! v0. Moreover,

AsyR(b�) = lim sup
n!1

sup
F2F

EF [`(b�)] � lim sup
n!1

EFn [`(b�)] = R(d; v0); (A.9)

where the last equality holds by Assumption 3.1(i). Similarly, for any v0 2 H1, there exists a
sequence fFn 2 F : n � 1g such that n1=2jj�(Fn)jj ! 1 and v(Fn) ! v0, which together with
Assumption 3.1(ii) implies that

AsyR(b�) = lim sup
n!1

sup
F2F

EF [`(b�)] � lim sup
n!1

EFn [`(b�)] = R(1; v0): (A.10)

(A.9) combined with (A.10) immediately yields (A.8). Finally, part (a) of the Theorem is implied
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by (A.1) and (A.8).
The claim in part (b) follows from the same arguments as those in part (a) with EF [`(b�)]

replaced by EF [`(b�)� `(e�)].
Proof of Corollary 3.2. For any � 2 R+, Theorem 3.1 together with Assumptions 3.2 and 3.3(i)
implies that

AsyR��(
b�) � lim sup

n!1

�
sup
F2F

EF [`�(b�)]�
= max

(
sup

(d;v0)2HR
R�(d; v0); sup

v02H1
R�(1; v0)

)
: (A.11)

Part (a) follows from AsyR�(b�) = lim�!1AsyR��(b�) and (A.11). Part (b) follows from part (b) of

Theorem 3.1 and the de�nitions of AsyRD�(b�; e�) and AsyRD�(b�; e�).
A.2 Proofs for the conservative and aggressive estimators

Lemma A.1 Under Assumption 4.1, we have the following results for any v0 2 H1.
(a) M2(�)

0
�12 M2(�) uniquely identi�es ��(v0).
(b) M1(�) = 0r1 uniquely identi�es �(v0), where M1(�) denotes the �rst r1 rows of M2(�).

Proof of Lemma A.1. Note that M2(�) and 
2 are the limits of M2(�; Fn) and 
2(Fn): By
Assumption 3.2(i), there exists F0 2 F such that M2(�) = EF0 [g2(Wi; �)] and 
2 = 
2(F0):

Following Assumption 4.1, M2(�)
0
�12 M2(�) uniquely identi�es ��(v0) and it only depends on v0;

not on F0: Similarly, EF0 [g1(Wi; �)] =M1(�); which uniquely identi�es �(v0) by Assumption 4.1.
For notational simplicity, �(v0) and ��(v0) de�ned in Lemma A.1 are abbreviated to �0 and ��0

in the proof below.

Lemma A.2 Suppose Assumptions 4.1-4.3 hold. Let S2(v0) � S(d; v0) [ S(1; v0). Under fFng 2
S2(v0); b�1 � �n !p 0 and b�2 !p �

�
0; recall that �n = �(Fn).

Proof of Lemma A.2. We �rst show the results for b�2. Note that EFn [g2(Wi; �)] ! M2(�) by
v(Fn) ! v0, which together with the uniform law of large numbers (ULLN) in Assumption 4.3(i)
implies that

n�1
nX
i=1

[g2(Wi; �)�M2(�)] = n
�1=2�n(g2(�)) + (EFn [g2(Wi; �)]�M2(�))!p 0r2 : (A.12)

uniformly over � 2 �. Using (A.12) and Assumption 4.2(v), we deduce that

QFn(�) =
[
Pn
i=1 g2(Wi; �)]

0W2;n[
Pn
i=1 g2(Wi; �)]

n2

=M2(�)
0
�12 M2(�) + op(1); (A.13)

uniformly over � 2 �. In addition, M2(�)
0
�12 M2(�) uniquely identi�es ��0 under Assumption 4.1,

which was established in Lemma A.1. Given the uniform convergence of the criterion function
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and the identi�cation of ��0, b�2 !p �
�
0 follows from standard arguments for the consistency of an

extremum estimator.
Similarly, b�1 !p �0 follows from the unique identi�cation of �0 established in Lemma A.1, the

uniform convergence of the GMM criterion function in (A.13), and W1;n ! 
�11 by Assumption
4.2(v). In addition, we have �n ! �0 because the criterion function has a unique minimizer by
Assumption 4.1. Finally, b�1 � �n = (b�1 � �0)� (�n � �0)!p 0d� .

Proof of Lemma 4.1. We �rst prove part (b) of the lemma. We start with showing that in
this case ��0 = �0, where by de�nition �

�
0 uniquely minimizes M2(�)


�1
2 M2(�) and �0 is the unique

value such that M1(�0) = 0r1 . To this end, it is su¢ cient to show M2(�0) = 0r2 given that 
2
is positive de�nite. The condition �(Fn) ! 0r� implies that EFn [g2(Wi; �n)] ! 0r2 . Because
EFn [g(Wi; �)]!M2(�), �n ! �0, and M2(�) is continuous, we have EFn [g(Wi; �n)]!M2(�0) = 0r2
as desired, which proves ��0 = �0 in this case. This together with Lemma A.2 implies that b�2 is
consistent because b�2 � �n = (b�2 � ��0) + (��0 � �0) + (�0 � �n) = op(1): (A.14)

By the consistency of b�2 in (A.14), the stochastic equicontinuity of �n(g2(�)) in Assumption
4.3(iv), and Assumptions 4.2(i) and (ii), we have

n�1
nX
i=1

g2(Wi; b�2) = n�1 nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n) + op(n�1=2): (A.15)

Using the consistency of b�2 in (A.14), Assumption 4.2(ii) and Assumption 4.3(ii), we get
n�1

nX
i=1

g2;�(Wi; b�2) = G2 + op(1): (A.16)

From the �rst order condition for the GMM estimator b�2, we deduce that
0 =

"
n�1

nX
i=1

g2;�(Wi; b�2)#0W2;n

"
n�1

nX
i=1

g2(Wi; b�2)#

= [G2 + op(1)]
0 �
�12 + op(1)

�(
n�1

nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n) + op(n�1=2))

=
�
G02


�1
2 + op(1)

�(
n�1

nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n))+ op(n�1=2) (A.17)

where the second equality follows from (A.15), (A.16) and W2;n � 
�12 !p 0r2�r2 by Assumption
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4.2(v). By (A.17) and the regularity conditions in Assumption 4.2,

n1=2(b�2 � �n)
= �

h�
G02


�1
2 G2

��1
+ op(1)

i0 �
G02


�1
2 + op(1)

� "
n�1=2

nX
i=1

g2(Wi; �n)

#
+ op(1) (A.18)

= �
h�
G02


�1
2 G2

��1
G02


�1
2 + op(1)

in
�n(g2(�n)) + n

1=2EFn [g2(Wi; �n]
o
+ op(1):

If n1=2�(Fn)! d 2 Rr� , we have n1=2EFn [g2(Wi; �n)]! d0 = [01�r1 ; d
0]0. Then, (A.18) implies

that

n1=2(b�2 � �n)!d �
�
G02


�1
2 G2

��1
G02


�1
2 (Z2 + d0) , where Z2 � N(0r2�1;
2); (A.19)

by the Slutzky�s theorem and the CLT in Assumption 4.3(iii). This proves Part (b).
Part (a) follows from the same arguments as those for part (b) with all components for b�2

replaced by those for b�1 and d0 replaced by 0 because all moments are correctly speci�ed.
Next, we prove part (c). Lemma A.2 implies b�2 !p �

�
0. First, if �

�
0 = �0, the arguments for

part (b) also applies here. In this case, jjn1=2EFn [g2(Wi; �n)] jj !p 1 and (A.18) implies that
jn1=2(b�2 � �n)j !p 1. Second, we consider the case in which jj��0 � �0jj > 0 for part (c). By the
�rst order condition of the GMM estimator b�2,

0 =

"
n�1

nX
i=1

g2;�(Wi; b�2)#0W2;n

"
n�1

nX
i=1

g2(Wi; b�2)# (A.20)

=
�
G2 (�

�
0)
0
�12 + op(1)

�(
n�1

nX
i=1

g2(Wi; �
�
0) + [G2(�

�
0) + op(1)] (

b�2 � ��0)
)
+ op(n

�1=2)

where the second equality is similar to that in (A.17) but is around the pseudo-true value ��0. Then,

n1=2(b�2 � ��0)
= �

h�
G2(�

�
0)
0
�12 G2(�

�
0)
��1

G2(�
�
0)
0
�12 + op(1)

i
n�1=2

nX
i=1

g2(Wi; �
�
0) + op(1)

= Op

 G2(��0)0
�12
 
n�1=2

nX
i=1

g2(Wi; �
�
0)

!
!
+ op(n

�1=2) = op(1); (A.21)

where the �rst and second equalities follow from (A.20) and the regularity conditions in Assumption
4.2(iii) and(iv), and the third equality follows from

G2(�
�
0)
0
�12 n

�1=2
nX
i=1

g2(Wi; �
�
0) (A.22)

= n1=2G2(�
�
0)
0
�12

�
�n(g2(�

�
0))

n1=2
+ (EFn [g2(Wi; �

�
0)]�M2(�

�
0)) +M2(�

�
0)

�
= op(n

1=2):
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In (A.22), the �rst equality is a simple decomposition, the second equality follows from the reg-
ularity conditions in Assumption 4.2, the ULLN in Assumption 4.3, EFn [g2(Wi; �

�
0)] ! M2(�

�
0)

following v(Fn)! v0, and G2(��0)
0
�12 M2(�

�
0) = 0d� , which in turn holds because (i) �

�
0 minimizes

M2(�)
0
�12 M2(�) and (ii) for some F0 2 F , M2(�) = EF0 [g2(Wi; �)] and G2(�) = EF0 [g2;�(Wi; �)] =

@(EF0 [g2(Wi; �)])=@�
0 by the dominated convergence theorem and Assumption 4.2.

In consequence,

n1=2(b�2 � �n) = n1=2(b�2 � ��0) + n1=2(��0 � �0) + n1=2(�0 � �n)
= n1=2 (��0 � �0) + op(n1=2); (A.23)

following n1=2(b�2���0) = op(n1=2) and �n ! �0. Because ��0 6= �0, it follows that jjn1=2(b�2��n)jj !p

1. This completes the proof of part (c).

A.3 Proofs for the optimal non-random weights

Proof of Lemma 4.2. We �rst consider fFng 2 S(d; v0) for d 2 Rr
�
. By Lemma 4.1,

n1=2
hb�(!)� �ni = n1=2(b�1 � �n) + ! hn1=2(b�2 � �n)� n1=2(b�1 � �n)i

!d �
�
1Zd;2 + !(�2 � ��1)Zd;2, (A.24)

under fFng 2 S(d; v0). This implies that

`(b�(!)) = n hb�n(!)� �ni0H hb�n(!)� �ni!d �(d;v0)(!), where

�(d;v0)(!) = Z
0
d;2�

�0
1 H�

�
1Zd;2 + 2!Z 0d;2(�2 � ��1)0H��1Zd;2

+ !2Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2. (A.25)

under fFng 2 S(d; v0).
Now we consider the expectation of �(d;v0)(!) using the equalities in Lemma A.3 below. First,

E[Z 0d;2��01 H��1Zd;2] = tr(H�1) (A.26)

because ��1Zd;2 = �1Z1 and �1E(Z1Z 01)�01 = �1 by de�nition. Second,

E
�
Z 0d;2(�2 � ��1)0H��1Zd;2

�
= tr(H��1E

�
Zd;2Z 0d;2

�
(�2 � ��1)0)

= tr(H��1
�
d0d

0
0 +
2

�
(�2 � ��1)0)

= tr(H(�2 � �1)); (A.27)
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where the last equality holds by Lemma A.3. Third,

E
�
Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2

�
= tr(H(�2 � ��1)

�
d0d

0
0 +
2

�
(�2 � ��1)0)

= d00�
0
2H�2d0 + tr(H(�1 � �2)) (A.28)

by Lemma A.3. Combining the results in (A.26)-(A.28), we obtain

E[�(d;v0)(!)] = tr(H�1)� 2!tr (H (�1 � �2)) + !
2
�
d00�

0
2H�2d0 + tr (H (�1 � �2))

�
. (A.29)

Note that d00�
0
2H�2d0 = d

0
0(�2���1)0H(�2���1)d0 = d00Bv0d0 because ��1d0 = 0d� . This shows part

(a).
Part (b) follows from part (a) by minimizing the quadratic function of !.
Part (c) follows from Lemma 4.1 directly.

Lemma A.3 (a) ��1d0 = 0d� ; (b) �
�
1
2�

�0
1 = �1; (c) �

�
1
2�

0
2 = �2; (d) �2
2�

0
2 = �2.

Proof of Lemma A.3. By construction, ��1d0 = 0d� : For the ease of notation, we write 
2 and
G2 as


2 =

0@ 
1 
1r


r1 
r

1A and G2 =

0@ G1

Gr

1A : (A.30)

To prove part (b), we have

��1
2�
�0
1 = [�1;0d��r� ]

0@ 
1 
1r


r1 
r

1A [�1;0d��r� ]
= �1
1�

0
1 =

�
G01


�1
1 G1

��1
= �1: (A.31)

To show part (c), note that

��1
2�
0
2 = � [�1;0d��r� ] 
2


�1
2 G2

�
G02


�1
2 G2

��1
= ��1G1

�
G02


�1
2 G2

��1
=
�
G02


�1
2 G2

��1
= �2 (A.32)

because ��1G1 = Id��d� : Part (d) follows from the de�nition of �2.

A.4 Proof for the empirical optimal averaging estimator

In the proofs below, we use A, B and D to denote Av0 , Bv0 and Dv0 ; respectively, for notational
simplicity.

Proof of Lemma 4.3. We �rst consider fFng 2 S(d; v0). By Lemma 4.1, Assumption 4.4, and
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the continuous mapping theorem (CMT),

e!eo !d e!(d;v0) = tr (A)

Z 0d;2BZd;2 + tr (A)
: (A.33)

Then,

n1=2(b�eo � �n) = n1=2(b�1 � �n) + e!eo hn1=2(b�2 � �n)� n1=2(b�1 � �n)i
!d �(d;v0) = �

�
1Zd;2 + e!(d;v0) (�2 � ��1)Zd;2: (A.34)

By the CMT,

`(b�eo) = n h(b�eo � �n)0H(b�eo � �n)i!d �(d;v0) = �
0
(d;v0)

H�(d;v0): (A.35)

Under fFng 2 S(1; v0); e!eo !p 0 because n1=2jb�2 � b�1j !p 1;

n1=2(b�eo � �n) = n1=2(b�1 � �n) + e!eon1=2(b�2 � b�1)
= n1=2(b�1 � �n) + n1=2(b�2 � b�1)tr hH(b�1 � b�2)i

n(b�2 � b�1)0H(b�2 � b�1) + tr hH(b�1 � b�2)i
!d �(1;v0) = �1Z1 (A.36)

by Lemma 4.1. Then by the CMT,

`(b�eo)!d �(1;v0) = �
0
(1;v0)H�(1;v0): (A.37)

Proof of Theorem 4.1. For any � 2 R+, under fFng 2 S(d; v0),

E
h
`�(b�eo)i! E

�
minf�(d;v0); �g

�
(A.38)

by the Portmanteau Lemma and Lemma 4.3(a) given that `�(b�eo) is bounded by �. Similarly under
fFng 2 S(1; v0),

E
h
`�(b�eo)i! E

�
minf�(1;v0); �g

�
: (A.39)

for any � 2 R. Under fFng 2 S2(v0), the conservative estimator b�1 satis�es
E
h
`�(b�1)i! E

�
minfZ 01�01H�1Z1; �g

�
= E

�
minf�(1;v0); �g

�
: (A.40)

43



This veri�es Assumptions 3.3 with

R�(d; v0) = E[minf�(d;v0); �g]

R�(1; v0) = E
�
minf�(1;v0); �g

�
; andeR�(d; v0) = E �minf�(1;v0); �g� = eR(1; v0); (A.41)

for d 2 Rr� . Part (a) follows from Corollary 3.2 with

AsyRD��(
b�eo; b�1) = min� inf

(d;v0)2HR
g�(d; v0); 0

�
;

AsyRD
�
�(
b�eo; b�1) = max( sup

(d;v0)2HR
g�(d; v0); 0

)
: (A.42)

Next, we show the upper bound for g�(d; v0) when � is large in part (b). As minf�(d;v0); �g �
�(d;v0) with probability 1,

E
�
minf�(d;v0); �g

�
� E

�
�(d;v0)

�
: (A.43)

The expectation E
�
�(d;v0)

�
exists because

E
�
�(d;v0)

�
� 2E

h
Z 0d;2��01 H��1Zd;2 + e!2(d;v0)Z 0d;2 (�2 � ��1)0H (�2 � ��1)Zd;2i

= 2E

"
Z 01�01H�1Z1 + tr(A)

tr(A)

Z 0d;2BZd;2 + tr(A)
Z 0d;2BZd;2

Z 0d;2BZd;2 + tr(A)

#
� 2E

�
Z 01�01H�1Z1

�
+ 2tr(A) � C (A.44)

where the �rst inequality is by the Cauchy-Schwarz inequality, the third inequality is by

tr(A)

Z 0d;2BZd;2 + tr(A)
� 1 and

Z 0d;2BZd;2
Z 0d;2BZd;2 + tr(A)

� 1 with probability 1. (A.45)

And the last inequality is by the regularity conditions in Assumption 4.2(iii) and (iv). Similarly,
we also have

E
�
�(1;v0)

�
� C1E[ k�1Z1k]2 � C (A.46)

for some C1; C <1:
By the de�nitions of �(d;v0) and �(1;v0), we can write

g(d; v0) = E[�(d;v0)]� E
�
�(1;v0)

�
= 2tr(A)J1 + tr(A)

2J2; where

J1 = E

"
Z 0d;2DZd;2

Z 0d;2BZd;2 + tr(A)

#
and J2 = E

"
Z 0d;2BZd;2

(Z 0d;2BZd;2 + tr(A))2

#
: (A.47)
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From the de�nition of g�(d; v0) and g(d; v0), we use (A.43) to deduce that

g�(d; v0) = E
�
minf�(d;v0); �g

�
� E

�
minf�(1;v0); �g

�
� E

�
�(d;v0)

�
� E

�
minf�(1;v0); �g

�
= E[�(1;v0) �minf�(1;v0); �g] + g(d; v0) (A.48)

for any (d; v0) 2 HR.
Next we show

lim
�!1

sup
(d;v0)2HR

�
E[�(1;v0) �minf�(1;v0); �g]

	
= 0: (A.49)

Recall that �1 is a function of G1 and 
1: De�ne

q(Z; G1;
1) � Z 0
1=21 �01H�1

1=2
1 Z, where Z � N(0r1 ; Ir1�r1). (A.50)

Then we can write

f�(G1;
1) � E[�(1;v0) �minf�(1;v0); �g]

= E [q(Z; G1;
1)�minfq(Z; G1;
1); �g] (A.51)

following the de�nition of �(1;v0): Let

�1 = f(G1;
1) : G1(Fn)! G1 and 
1(Fn)! 
1 for some fFng 2 Fg: (A.52)

We now have
lim
�!1

sup
(d;v0)2HR

f�(G1;
1) � lim
�!1

sup
(G1;
1)2�1

f�(G1;
1) (A.53)

because (d; v0) 2 HR requires the convergence listed in (A.52) as well as the convergence of some
other functions.

It remains to show lim�!1 sup(G1;
1)2�1 f�(G1;
1) = 0. First, 8(G1;
1) 2 �1, lim�!1
f�(G1;
1) = 0 by the dominated convergence theorem (DCT) because

0 � q(Z; G1;
1)�minfq(Z; G1;
1); �g � q(Z; G1;
1) (A.54)

and E [q(Z; G1;
1)] = tr(H�1) � C. Second, this convergence is uniform in (G1;
1) 2 �1 by
the Dini�s Theorem (see, Rudin (1976)) because (i) f�(G1;
1) is monotonically decreasing in �,
(ii) �1 is compact, and (iii) f�(G1;
1) is continuous in (G1;
1). The set �1 is compact following
Assumption 3.2(i). The continuity of f�(G1;
1) in (G1;
1) is by the DCT because (a) q(Z; G1;
1)
is continuous in (G1;
1) and (b) E[ sup(G1;
1)2�1 q(Z; G1;
1)] <1. To see (b), note that

sup
(G1;
1)2�1

q(Z; G1;
1) �
"

sup
(G1;
1)2�1

�max

�


1=2
1 �01H�1


1=2
1

�#
Z 0Z � CZ 0Z (A.55)
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by Assumption 4.2(iii) and (iv).
This completes the veri�cation of (A.49). It follows from (A.49) that for large �;

sup
(d;v0)2HR

g�(d; v0) � sup
(d;v0)2HR

g(d; v0) and inf
(d;v0)2HR

g�(d; v0) � inf
(d;v0)2HR

g(d; v0). (A.56)

Next, we provide a upper bound for J1. Let

�(x) =
x

x0Bx+ tr(A)
; where x = Zd;2 and B = (�2 � ��1)0H(�2 � ��1): (A.57)

Its derivative is
@�(x)0

@x
=

1

x0Bx+ tr(A)
Ir2 �

2

(x0Bx+ tr(A))2
Bxx0: (A.58)

Recall that
D = (�2 � ��1)0H��1; (A.59)

which satis�es DZd;2 = DZ2 by construction because the last r� rows of ��1 are zeros. By Lemma
1 of Hansen (2014a), which is a matrix version of the Stein�s Lemma (Stein, 1981),

J1 = E
�
�(Zd;2)0DZd;2

�
= E

�
�(Zd;2)0DZ2

�
= E

�
tr

�
@�(Zd;2)0
@x

D
2

��
: (A.60)

Applying Lemma A.3 yields

tr (D
2) = tr
�
(�2 � ��1)0H��1
2

�
= tr(H (��1
2�2 � ��1
2��1))

= tr(H (�2 � �1)) = �tr(A): (A.61)
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Plugging (A.57)-(A.59) into (A.60), we have

J1 = E

"
Z 0d;2DZd;2

Z 0d;2BZd;2 + tr(A)

#

= E

"
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264tr
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�2
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� E
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�tr(A)
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#
+ 2E

264
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�
�max(A)�

Z 0d;2BZd;2 + tr(A)
�2
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= E

"
�tr(A)
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#
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264
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Z 0d;2BZd;2

�
+ tr(A)

i
�max(A)� tr(A)�max(A)�

Z 0d;2BZd;2 + tr(A)
�2

375
= E

"
2�max(A)� tr(A)
Z 0d;2BZd;2 + tr(A)

#
� E

264 2�max(A)tr(A)�
Z 0d;2BZd;2 + tr(A)

�2
375 ; (A.62)

where the inequality follows from (A.61) and tr(CD) � tr(C)�max(D): Next, note that

J2 = E

264 Z 0d;2BZd;2���Z 0d;2BZd;2 + tr(A)���2
375 = E

264Z 0d;2BZd;2 + tr(A)� tr(A)���Z 0d;2BZd;2 + tr(A)���2
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= E
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Z 0d;2BZd;2 + tr(A)

#
� E

264 tr(A)�
Z 0d;2BZd;2 + tr(A)

�2
375 : (A.63)

Combining (A.62) and (A.63), we obtain that

g(d; v0) = 2tr(A)J1 + tr(A)
2J2

� 2tr(A)

0B@E" 2�max(A)� tr(A)Z 0d;2BZd;2 + tr(A)
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375 : (A.64)

To show part (c), note that for any v0 such that (d; v0) 2 HR for some d 2 Rr� ; we have
G2 = G2(F ) and 
2 = 
2(F ) for some F 2 F . This implies that �1 = �1(F ) and �2 = �2(F ) for
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some F 2 F for any (d; v0) 2 HR. Therefore,

sup
(d;v0)2HR

g(d; v0) � 0 and inf
(d;v0)2HR

g(d; v0) < 0 (A.65)

if A = H(�1(F )� �2(F )) satis�es tr(A) > 0 and 4�max(A)� tr(A) � 0 for 8F 2 F . The claim in
part (c) follows from (A.65) and part (a).

A.5 Asymptotic risk of the pre-test GMM estimator with the J-test statistic

To simulate the asymptotic risk of the pre-test estimator in Figure 1, we consider the asymptotic
risk under fFng 2 S(d; v0) and fFng 2 S(1; v0). We �rst consider fFng 2 S(d; v0) for d 2 Rr

�
:

Under Assumptions 4.2 and 4.3, by (A.15) and (A.18), it is easy to show that

1

n

nX
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= (Ir2 +G2�2)
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g2(Wi; �n) + op(n
�1=2) (A.66)

which together with Assumptions 4.2(v) implies that
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=
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��1
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+ op(1):

By Assumption 4.3(iii), we have

n�1=2
nX
i=1

g2(Wi; �n)!d Z2 + d0 = Zd;2; (A.68)

which combined with the CMT implies that

Jn !d Z 0d;2
h

�12 � 
�12 G2

�
G02


�1
2 G2

��1
G02


�1
2

i
Zd;2 � J1(G2;
2; d0) (A.69)

for any fFng 2 S(d; v0).
Let � be a prespeci�ed signi�cance level. The critical value c� is the 1 � � quantile of the

chi-square distribution with (r2� d�) degree of freedom, which is the asymptotic distribution of Jn
when d0 = 0r2 :
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The pre-test estimator based on Jn can be written as

b�p = (1� e!�;p)b�1 + e!�;pb�2 where e!�;p = I fJn < c�g : (A.70)

By (A.69) and the CMT, we have

e!�;p !d I fJ1(G2;
2; d0) < c�g � e!�;1 (A.71)

and
n1=2(b�p � �n) = b�1 + e!�;p(b�2 � b�1)!d �

�
1Zd;2 + e!�;1(�2 � ��1)Zd;2, (A.72)

under fFng 2 S(d; v0). Furthermore, by the CMT,

`(b�p) = n(b�p � �n)0H(b�p � �n)!d �(d;v0)(e!�;1), (A.73)

where

�(d;v0)(e!�;1) = Z 0d;2��01 H��1Zd;2 + 2e!�;1Z 0d;2(�2 � ��1)0H��1Zd;2
+ e!2�;1Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2. (A.74)

and its expectation is

E[�(d;v0)(e!�;1)] = tr(H�1) + 2E �e!�;1Z 0d;2(�2 � ��1)0H��1Zd;2�
+ E

�e!�;1Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2� : (A.75)

This veri�es Assumption 3.1 for the pre-test estimator with R(d; v0) = E[�(d;v0)(e!�;1)]; assuming
it is uniformly integrable. Otherwise, we can consider the truncated risk. For fFng 2 S(1; v0);
the J-test is consistent and the pretest estimator is the conservative GMM estimator w.p.a.1.

The asymptotic risk of the pre-test estimator b�p in Figure 1 is simulated based on the formula
in (A.75).
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