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Abstract 14 

 Organisms must accurately sense and respond to nutrients to survive. In filamentous 15 

fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in 16 

continued, rapid growth for the exploitation of environmental resources. To ensure efficient 17 

nutrient utilization, fungi have evolved a combination of activating and repressing genetic 18 

networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, 19 

which require minimal energy and resources to utilize, and nonpreferred nutrients, which have 20 

more energy intensive catabolic requirements. Genes necessary for utilization of nonpreferred 21 

carbon sources are activated by transcription factors that respond to the presence of the 22 

specific nutrient and repressed by transcription factors that respond to the presence of preferred 23 

carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription 24 
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factors. Pathway-specific transcription factors respond to the presence of a specific 25 

nonpreferred nitrogen source, while another transcription factor activates genes in the absence 26 

of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and 27 

upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen 28 

sources and their roles in regulating carbon and nitrogen catabolism. 29 

 30 

Key Points 31 

• Interplay of activating and repressing transcriptional networks regulates catabolism 32 

• Nutrient-specific activating transcriptional pathways provide metabolic specificity 33 

• Repressing regulatory systems differentiate nutrients in mixed nutrient environments 34 
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Introduction 44 

Filamentous fungi occupy a vast diversity of environmental niches and lifestyles ranging 45 

from soil and marine-dwelling saprophytes to plant symbionts to pathogens of plants and 46 

animals. To facilitate their diverse lifestyles, fine-tuned metabolic regulatory systems have 47 

evolved that allow fungi to efficiently sense and utilize nutrients available in their environment. In 48 

particular, the ability to readily utilize insoluble nutrient sources distinguishes filamentous fungi 49 

from many other microorganisms. The size and insoluble nature of these nutrients necessitates 50 

extracellular processing. Filamentous fungi secrete substantial quantities of glycosyl hydrolases, 51 

proteases, and other degradative enzymes in order to access these nutrients with otherwise low 52 

bioavailability (Benocci et al. 2017; Gurovic et al. 2023; Hage and Rosso 2021; Huberman et al. 53 

2016; Sakekar et al. 2021). While the capacity to breakdown and utilize complex and insoluble 54 

substrates is paramount to the ecological roles of many filamentous fungi, these traits are also 55 

highly desirable industrially where filamentous fungi are utilized as microbial factories to 56 

produce enzymes, secondary metabolites, and fermentation products. The breakdown of 57 

insoluble nutrients is also important in breaching plant and, potentially, animal defenses during 58 

pathogenesis (Doehlemann et al. 2017; Rafiei et al. 2021; Ries et al. 2018). The study of 59 

nutrient sensing and utilization in filamentous fungi clarifies the role of these organisms within 60 

their ecological niches, improves our understanding of fungal diseases, and informs genetic 61 

engineering for industrial purposes. 62 

Not all nutrients have the same enzymatic requirements for utilization. The diversity of 63 

nutrients utilized by filamentous fungi, coupled with the differing energy and resource costs 64 

needed for their breakdown, has led to the evolution of fine-tuned and hierarchical catabolic 65 

regulatory systems. To activate genes necessary for utilization of a specific nutrient, the nutrient 66 

itself, a breakdown product of the nutrient, or a modified version of the nutrient can act as a 67 

signaling molecule to indicate the presence of the nutrient (Najjarzadeh et al. 2021; Van Dijck et 68 

al. 2017; Wu et al. 2020; Znameroski et al. 2012). Subsequently, this signal turns on specialized 69 
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activating transcription factors that ensure the transporters, secreted enzymes, and catabolic 70 

enzymes necessary for utilization are expressed (Fig. 1 and Table 1). Meanwhile, other 71 

regulatory systems distinguish between the available nutrients and either repress or fail to 72 

activate the expression of genes associated with utilization of less preferred nutrients when a 73 

more preferred nutrient is available (Fig. 2). 74 

While many reviews focus on the regulation and utilization of a subset of nutrients (e.g. 75 

lignocellulose [rev. in (Benocci et al. 2017)]), or nutrients containing a particular element (i.e., 76 

sulfur [rev. in (Amich 2022)], iron [rev. in (Misslinger et al. 2021)], or phosphate [rev. in (Bhalla 77 

et al. 2022)], etc.), recent and historical work suggests that regulation of the genes involved in 78 

different nutrient classes is intertwined (Arst and Cove 1973; Cohen 1973; Dementhon et al. 79 

2006; Huberman et al. 2021a; Huberman et al. 2021b; Katz et al. 2006; Kelly and Hynes 1977; 80 

Macios et al. 2012; Snyman et al. 2019; Wu et al. 2020; Xiong et al. 2017). In this review, we 81 

provide an overview of the interplay of the activating and repressing regulatory systems involved 82 

in carbon and nitrogen catabolism in filamentous fungi. We briefly discuss a number of the 83 

genetic pathways that respond to specific carbon and nitrogen sources to activate expression of 84 

genes necessary for utilization of specific nutrients (Fig. 1 and Table 1). We then focus in more 85 

detail on the carbon and nitrogen catabolite repression pathways, which repress or fail to 86 

activate genes necessary to utilize nonpreferred nutrients when preferred nutrients are available 87 

(Fig. 2). As the history of the discovery and early characterization of many of these pathways 88 

has been covered in detail in a number of other reviews [reviewed in (Benocci et al. 2017; 89 

Hoffmeister 2016; Huberman et al. 2016; Marzluf 1997; Ries et al. 2018; Tudzynski 2014)], this 90 

review gives a brief background of the discovery of the genes that regulate nutrient utilization as 91 

context for our focus on more recent studies that use modern genomic, genetic, cell biological, 92 

and biochemical tools to investigate the role these regulatory networks play in nutrient utilization 93 

and the questions for further study that are still outstanding. 94 

 95 
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Activation of Nutrient Utilization Pathways 96 

Activation of genes required for nutrient utilization can occur in response to specific 97 

nutrients or in response to starvation for a nutrient element. Filamentous fungi generally activate 98 

genes necessary for utilization of specific carbon sources in response to that carbon source or 99 

degradation products of that carbon source (Wu et al. 2020). Activation of nitrogen utilization 100 

genes can occur in response to nitrogen starvation and/or the presence of a specific nitrogen 101 

source (Huberman et al. 2021a). Here we discuss transcription factors that activate expression 102 

of nutrient utilization genes in response to specific carbon and nitrogen sources (Fig. 1 and 103 

Table 1). 104 

 105 

ACTIVATION OF CARBON UTILIZATION PATHWAYS 106 

Filamentous fungi can utilize a wide variety of carbohydrates from simple sugars to the 107 

complex carbohydrates present in the plant cell wall. Many of these carbohydrates require 108 

specialized enzymes and transporters for utilization. The genes encoding these enzymes and 109 

transporters are activated by transcription factors in response to the presence of specific 110 

nutrients. Many of these transcription factors are broadly conserved among ascomycete 111 

filamentous fungi with some divergence in the nutrient specificity and breadth of the regulon 112 

(Dalal and Johnson 2017; Todd et al. 2014). 113 

Many filamentous fungi exist as saprotrophs, where they break down dead plant material 114 

into its component parts. The plant cell wall is composed of four main carbohydrate polymers: 115 

cellulose, hemicellulose, pectin, and lignin. Cellulose is the most abundant plant cell wall 116 

polysaccharide and is composed of long chains of b-1,4-linked glucose molecules organized 117 

into microfibrils that provide structural support (Rongpipi et al. 2018). These cellulose 118 

microfibrils are held together by a combination of hemicellulose, pectin, and lignin, which are all 119 

more amorphous in nature (Zhang et al. 2021a). Hemicellulose crosslinks cellulose microfibrils 120 

and is mainly composed of xylans, arabinans, mannans, mixed linkage b-glucans, and 121 
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xyloglucans (Zhang et al. 2021a; Zhang et al. 2021b). Pectin forms a matrix for cellulose 122 

microfibrils and is rich in galacturonic acid (Shin et al. 2021). Lignin is composed of phenolic 123 

compounds and has covalent linkages with hemicellulose (Ralph et al. 2019; Terrett and Dupree 124 

2019). Filamentous fungi are capable of degrading and utilizing all of these complex 125 

carbohydrates. However, more is known about the regulation of cellulose, hemicellulose, and 126 

pectin utilization than that of lignin. Filamentous fungi also utilize other plant-, microbe-, and 127 

animal-derived carbon sources. 128 

Cellulose utilization 129 

Most of the transcription factors required for activation of carbohydrate utilization fall into 130 

the zinc binuclear cluster class of transcription factors (Benocci et al. 2017). The zinc binuclear 131 

cluster transcription factor CLR-2/ClrB, is required for cellulose utilization in a number of 132 

filamentous fungi, including Neurospora and aspergilli (Coradetti et al. 2012). CLR-2 was 133 

originally identified in the Sordariomycete Neurospora crassa, where it regulates expression of 134 

cellulases, sugar transporters, and a small number of hemicellulases (Coradetti et al. 2012; Wu 135 

et al. 2020). Expression of clr-2 in N. crassa is sufficient to activate its target genes, implying 136 

that posttranslational activation is unnecessary (Coradetti et al. 2013). In contrast, the 137 

transcriptional activator of clr-2, CLR-1, is another zinc binuclear cluster transcription factor that 138 

is regulated mainly by posttranslational interactions with CLR-3 (Coradetti et al. 2012; 139 

Huberman et al. 2017). CLR-3 inhibits CLR-1 activity in the absence of an inducer and contains 140 

a domain of unknown function that may be capable of binding sugar molecules (Ghosh et al. 141 

2014; Huberman et al. 2017). CLR-1 is responsible for activating expression of clr-2 and a small 142 

number of cellulase and transporter genes, while CLR-2 activates the majority of genes 143 

necessary for cellulose utilization (Coradetti et al. 2012; Craig et al. 2015; Wu et al. 2020). 144 

Homologs of CLR-1 and CLR-2 exist in the genomes of many ascomycete filamentous 145 

fungi (Coradetti et al. 2012). While the role of these genes in cellulase production is generally 146 

conserved, the transcription factor regulons and regulatory mechanisms that control these 147 
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transcription factors differ somewhat between species. Like in N. crassa, CLR-2/ClrB is 148 

essential for full cellulase production in Aspergillus nidulans (Coradetti et al. 2012), Aspergillus 149 

niger (Raulo et al. 2016), Aspergillus oryzae (Ogawa et al. 2013), Thermothelomyces 150 

thermophilus (formerly Myceliophthora thermophila) (Zhang et al. 2022), and Penicillium 151 

oxalicum (Li et al. 2015). However, in several of these fungi, the expression of clrB is not 152 

sufficient to generate inducer-independent expression of cellulases, suggesting ClrB may be 153 

regulated posttranslationally (Coradetti et al. 2013; Gao et al. 2019). Additionally, while the 154 

activator of clr-2 expression in response to cellulose in N. crassa is CLR-1, the same is not true 155 

for all ascomycete filamentous fungi (Coradetti et al. 2012). In P. oxalicum the transcription 156 

factor CxrA appears to play an important role in clrB activation (Liao et al. 2019; Yan et al. 157 

2017). 158 

A suite of additional transcription factors is also involved in cellulase production in 159 

various filamentous fungi, although their roles are less well conserved. In Trichoderma reesei, 160 

xyr1 (described below) and four additional transcription factors regulate cellulase production. 161 

Two of these transcription factor genes were identified in a yeast one-hybrid screen for 162 

transcription factors that promote expression of a selectable marker under the promoter of the 163 

cbh1 cellulase gene, leading these transcription factors to be termed ace for activator of 164 

cellulase expression (Saloheimo et al. 2000). Ace2 does activate expression of cellulase genes 165 

(Aro et al. 2001), however it was later determined that Ace1 is actually a cellulase gene 166 

repressor (Aro et al. 2003). Subsequent investigations identified two additional transcription 167 

factor genes involved in cellulase gene activation: ace3 (Hakkinen et al. 2014) and ace4 (Chen 168 

et al. 2021). 169 

Although many transcription factors that regulate carbon utilization play a role 170 

specifically relating to utilization of that nutrient, there are a number of transcription factors that 171 

regulate cellular processes beyond what is strictly necessary for utilization of that specific 172 

carbon source. ClrC from P. oxalicum regulates cellulase gene expression along with 173 
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conidiation and the stress response (Lei et al. 2016). The N. crassa CLR-4 transcription factor 174 

plays a role both in modulating cellulase expression and in the cyclic AMP pathway (Liu et al. 175 

2019). The evolutionary coupling of these catabolic and cellular processes in different fungi 176 

could potentially provide insights into their respective lifestyles and ecological roles. 177 

Hemicellulose utilization 178 

In T. reesei, expression of cellulases is fully coupled with hemicellulase expression and 179 

is regulated by the zinc binuclear cluster transcription factor xlnR/xlr-1/xyr1 (Mach-Aigner et al. 180 

2008; Rauscher et al. 2006; Stricker et al. 2006). This transcription factor is highly conserved 181 

among ascomycete filamentous fungi. In all but a few organisms, in which its regulon is more 182 

limited, xlnR/xlr-1/xyr1 regulates xylose metabolism and xylanolytic enzyme production (Benocci 183 

et al. 2017). Regulation of additional enzymes differs among species. In T. reesei, P. oxalicum, 184 

and a few aspergilli, XlnR/Xyr1 regulates cellulase expression as well as xylanase expression 185 

(Li et al. 2015; Mach-Aigner et al. 2008; Rauscher et al. 2006; Stricker et al. 2006; van Peij et al. 186 

1998a; van Peij et al. 1998b). However, in other species, such as N. crassa, the XLR-1 regulon 187 

is mainly limited to genes necessary to degrade and utilize hemicellulose (Sun et al. 2012; Wu 188 

et al. 2020). In T. reesei, expression of xyr1 is sufficient to activate hemicellulase expression 189 

even in the absence of an inducer (Lv et al. 2015). However, a conserved point mutation in 190 

xyr1/xlr-1 improves hemicellulase expression in the absence of an inducer in both T. reesei and 191 

N. crassa, suggesting that posttranslational modifications or conformational changes that occur 192 

upon interaction with an inducer of this transcription factor are important for function (Craig et al. 193 

2015; Derntl et al. 2013). In T. reesei, Xyr1 activates gene expression by recruiting a subunit of 194 

the mediator complex, Gal11 (Med15), which in turn recruits RNA polymerase II (Zheng et al. 195 

2020). Xyr1 also interacts with the conserved Cyc8/Tup1 corepressors to regulate 196 

(hemi)cellulase gene expression, perhaps through chromatin remodeling (Wang et al. 2021). 197 

Hemicellulose also includes arabinan. While xlnR/xlr-1/xyr1 plays a role in the regulation 198 

of arabinanolytic activity, in a number of fungi a separate transcription factor is the major 199 
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regulator of most genes encoding arabinanolytic enzymes and arabinose catabolic enzymes 200 

(Battaglia et al. 2011; Benocci et al. 2018; Ishikawa et al. 2018; Klaubauf et al. 2016; Meng et 201 

al. 2022; Wu et al. 2020). Transcription factors associated with arabinan utilization are present 202 

in several ascomycete filamentous fungi, however the arabinanolytic regulators are not well 203 

conserved relative to other transcription factors associated with plant cell wall degradation. The 204 

Sordariomycete transcription factor ARA-1/Ara1 regulates arabinan utilization in N. crassa, T. 205 

reesei, and Magnaporthe oryzae (Benocci et al. 2018; Klaubauf et al. 2016; Wu et al. 2020). 206 

Deletion of ara-1 in N. crassa results in substantially reduced growth on arabinan, arabinose, 207 

and galactose, but no growth phenotype on xylan or xylose (Wu et al. 2020). Gene regulation by 208 

ARA-1 further supports its role in arabinan utilization (Wu et al. 2020). In the Eurotiomycetes, an 209 

unrelated transcription factor, AraR, regulates arabinan utilization. AraR is a paralog of XlnR in 210 

aspergilli that activates genes necessary for arabinan utilization in the presence of arabinose 211 

and arabinan (Battaglia et al. 2011; Ishikawa et al. 2018; Meng et al. 2022). Intriguingly, in A. 212 

niger a single point mutation is sufficient to yield inducer-independent expression of 213 

arabinanolytic enzymes (Reijngoud et al. 2019). 214 

Mannans are another important component of hemicellulose. Despite this, the regulation 215 

of mannan utilization is more closely linked with cellulose than hemicellulose utilization in 216 

ascomycete filamentous fungi with significant crosstalk between cellulose and mannan 217 

utilization and competition at the level of carbohydrate uptake (Hassan et al. 2019). The major 218 

cellulase regulator CLR-2/ClrB also regulates production of mannanases (Craig et al. 2015; 219 

Ogawa et al. 2012; Ogawa et al. 2013; Samal et al. 2017; Wu et al. 2020). Indeed in A. oryzae 220 

the CLR-2/ClrB homolog was initially identified for its role in mannan utilization and named 221 

ManR (Ogawa et al. 2012). Curiously, N. crassa is capable of both mannan and glucomannan 222 

utilization but appears only to be able to sense glucomannan. However, constitutive expression 223 

of clr-2 in N. crassa is sufficient to enable the utilization of mannan as a sole carbon source 224 

(Samal et al. 2017). 225 
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Pectin utilization 226 

Pectin is primarily composed of galacturonic acid monomers and is structurally a much 227 

more heterogeneous substrate than either cellulose or hemicellulose. Perhaps as a 228 

consequence of this, no single transcription factor controls expression of all pectin utilization 229 

genes. In N. crassa, pectin degradation is regulated by two transcription factors: PDR-1 and 230 

PDR-2 (Thieme et al. 2017; Wu et al. 2020). PDR-1 is required for utilization of rhamnose, with 231 

a moderate role in galacturonic acid utilization (Thieme et al. 2017), while PDR-2 is required for 232 

galacturonic acid utilization (Wu et al. 2020). Although both transcription factors regulate pectin 233 

degradation, PDR-1 is responsible for degradation of homogalacturonan and 234 

rhamnogalacturonan I, while PDR-2 regulates pectate lyase gene expression (Thieme et al. 235 

2017; Wu et al. 2020). Deletion of both transcription factor genes still allows for some growth on 236 

pectin substrates (Wu et al. 2020), perhaps because degradation of the pectin components 237 

arabinan and arabinose is regulated by a separate transcription factor (ARA-1), or because 238 

other unknown transcription factors are involved in regulating pectin utilization. 239 

Orthologs of these two transcription factors play a role in pectin degradation in aspergilli. 240 

The PDR-1 ortholog RhaR regulates rhamnose utilization and secreted enzymes necessary for 241 

rhamnogalacturonan I degradation (Gruben et al. 2014; Pardo and Orejas 2014). RhaR is 242 

induced to activate expression of genes necessary to utilize pectin, not by rhamnose, but by a 243 

downstream metabolic intermediate, L-2-keto-3-deoxyrhamnoate (Chroumpi et al. 2020; 244 

Khosravi et al. 2017). The PDR-2 ortholog GaaR activates genes necessary for galacturonic 245 

acid utilization in both aspergilli and Botrytis cinerea (Alazi et al. 2016; Zhang et al. 2016). In A. 246 

niger, GaaR activity is repressed by the cytosolic protein GaaX (Niu et al. 2017). Inducer-247 

independent expression of pectinolytic genes is possible through deletion of gaaX (Niu et al. 248 

2017), a point mutation in gaaR (Alazi et al. 2019), and overexpression of gaaR (Alazi et al. 249 

2018). The specific chemical inducer of galacturonic acid utilization genes and a number of 250 
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pectinases in A. niger is the pathway intermediate 2-keto-3-deoxy-L-galactonate (Alazi et al. 251 

2017). 252 

Utilization of other plant cell wall-derived sugars 253 

Plant cell wall components are made up of soluble sugar molecules that require 254 

specialized catabolic enzymes for utilization. These catabolic pathways can be regulated by the 255 

transcription factor that is also responsible for activating expression of genes encoding the 256 

secreted enzymes that degrade the complex carbohydrate in which the sugar is found, 257 

specialized transcription factors that specifically activate the genes in the sugar catabolic 258 

pathways, or a combination of the two (Benocci et al. 2017; Wu et al. 2020). Xylose, arabinose, 259 

and galactose are found in hemicellulose and/or pectin (Shin et al. 2021; Zhang et al. 2021a; 260 

Zhang et al. 2021b). Utilization of these sugars by aspergilli involves an overlapping set of 261 

enzymes, including the genes involved in pentose catabolism, which are regulated by a 262 

combination of XlnR, AraR, and the transcription factor(s) that regulate galactose utilization 263 

(Christensen et al. 2011; Chroumpi et al. 2022; Gruben et al. 2012; Kowalczyk et al. 2015). The 264 

transcription factor GalX regulates galactose utilization in most aspergilli (Christensen et al. 265 

2011; Gruben et al. 2012). In contrast, A. nidulans has two galactose utilization regulators: GalX 266 

and GalR. GalX is the major regulator of galactose utilization, regulating the expression of both 267 

enzymes necessary for galactose utilization and the transcription factor GalR, which has a more 268 

minor role in the regulation of galactose catabolic enzyme genes (Christensen et al. 2011; Meng 269 

et al. 2022). 270 

A. nidulans utilizes galactose and arabinose simultaneously in media containing both 271 

sugars (Németh et al. 2019). In aspergilli GalX and AraR are the primarily regulators of 272 

galactose and arabinose utilization, respectively; however, there is crosstalk in the regulation of 273 

genes required for their utilization (Meng et al. 2022). AraR activates the expression of 274 

galactose catabolic enzymes in response to arabinose, allowing for utilization of galactose in the 275 

presence of arabinose even when cells are lacking galR and galX (Meng et al. 2022; Németh et 276 
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al. 2019). In a similar fashion GalR and/or GalX can compensate for the loss of araR and 277 

activate arabinose utilization genes in response to galactose (Meng et al. 2022). In the 278 

Sordariomycetes N. crassa and T. reesei ARA-1/Ara1 regulates utilization of both arabinose and 279 

galactose (Benocci et al. 2018; Wu et al. 2020). 280 

The pentose catabolic pathway is necessary for utilization of both arabinose and the 281 

hemicellulose sugar xylose (Battaglia et al. 2014; De Groot et al. 2007). In A. niger, xylose and 282 

arabinose utilization are regulated by both AraR and XlnR. Deletion of both transcription factor 283 

genes is necessary to abolish xylose utilization in A. niger as both transcription factors regulate 284 

genes in the pentose catabolic pathway (Battaglia et al. 2011; Chroumpi et al. 2022). A similar 285 

phenomenon occurs in T. reesei where Xyr1 and Ara1 coregulate arabinose utilization, and 286 

deletion of both transcription factors is necessary to fully abolish growth on xylose (Benocci et 287 

al. 2018). This coregulation by AraR or Ara1 and XlnR/Xyr1 is in contrast to the regulation of 288 

xylose and arabinose utilization in N. crassa, where XLR-1 and ARA-1 are responsible for 289 

regulation of xylose and arabinose utilization, respectively, and these transcription factors do not 290 

show functional redundancy (Sun et al. 2012; Wu et al. 2020). As mentioned above, utilization 291 

of the major components of pectin, rhamnose and galacturonic acid, is regulated by PDR-292 

1/RhaR and PDR-2/GaaR, respectively, although some crosstalk exists between the two 293 

regulons (Alazi et al. 2016; Gruben et al. 2014; Niu et al. 2017; Pardo and Orejas 2014; Thieme 294 

et al. 2017; Wu et al. 2020; Zhang et al. 2016). 295 

Cellulose is made up of glucose, which, as a preferred carbon source, does not require 296 

specialized regulatory pathways to utilize. However, cellobiose, a dimer of b-1,4-linked glucose 297 

molecules, is a breakdown product of cellulose. Utilization of cellobiose is regulated by CLR-298 

1/ClrA and CLR-2/ClrB in N. crassa and A. nidulans (Coradetti et al. 2012). In N. crassa, CLR-1 299 

is the major regulator of cellobiose utilization, while CLR-2 appears to have no role in regulating 300 

utilization of cellobiose. In contrast, both ClrA and ClrB play a role in cellobiose utilization in A. 301 
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nidulans. ClrB is required for cellobiose utilization, while the role of ClrA in cellobiose utilization 302 

is more minor (Coradetti et al. 2012). 303 

Utilization of plant energy storage molecules 304 

Beyond the plant cell wall, plants also contain substantial quantities of other polymerized 305 

carbon sources. These include the energy storage molecules starch and inulin. Inulin consists of 306 

diverse species of b-1,2-linked fructose molecules (An et al. 2022), and its utilization requires 307 

the expression of inulolytic enzymes and sugar transporters. In aspergilli these genes are 308 

regulated by the transcription factor InuR, which also plays a role in sucrose utilization (Yuan et 309 

al. 2008). 310 

Starch consists of amylose, linear chains of a-1-4-linked glucose molecules, and 311 

amylopectin, a-1-4-linked glucose polymers branched at a-1-6 glycosidic bonds. Starch is 312 

readily used as a carbon source by filamentous fungi, and this utilization is regulated by AmyR 313 

in aspergilli (Gomi et al. 2000; Tani et al. 2001) and penicillia (Liu et al. 2013) and COL-314 

26/BglR/ART1 in N. crassa, T. reesei, and Fusarium (Nitta et al. 2012; Oh et al. 2016; Xiong et 315 

al. 2017). Unlike many of the other transcription factors directly regulating utilization of plant 316 

carbohydrates, the transcription factors regulating starch utilization have a number of homologs, 317 

and phylogenetic analysis reveals that AmyR from the Eurotiomycetes is not in the same clade 318 

as COL-26/BglR/ART1 from the Sordariomycetes (Xiong et al. 2017). 319 

The expansion of AmyR and COL-26/BglR/ART1 homologs may have resulted in 320 

specialization of regulators in some of the aspergilli. Maltose is a soluble disaccharide building 321 

block of starch. In A. nidulans, starch and maltose utilization are both regulated by AmyR (Tani 322 

et al. 2001). However, while starch utilization is regulated by AmyR in A. oryzae, a small gene 323 

cluster of maltose utilization genes is regulated by the AmyR homolog MalR, which 324 

phylogenetically groups in a clade separate from both AmyR and COL-26 (Hasegawa et al. 325 

2010). AmyR is translocated from the cytoplasm to the nucleus and activates expression of 326 
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target genes in response to isomaltose in both A. nidulans and A. oryzae (Makita et al. 2009; 327 

Suzuki et al. 2015). However, in A. oryzae MalR is constitutively found in the nucleus, and the 328 

maltose gene cluster is induced in response to maltose (Suzuki et al. 2015). Along with its role 329 

in starch utilization, COL-26 also plays a role in glucose sensing in N. crassa (Xiong et al. 330 

2014), perhaps through regulation of glucose transporters (Li et al. 2021c). 331 

There may be some crosstalk between AmyR and InuR regulation of sucrose and inulin 332 

in A. niger. While InuR plays the primary role in regulating sucrose and inulin utilization, AmyR 333 

has a small effect on the expression of genes necessary for utilization of these substrates in 334 

solid media, although minimal effect was seen in liquid media (Kun et al. 2023). A previous 335 

study of differences in the utilization of a whole plant biomass substrate in solid as opposed to 336 

liquid media observed some differences in the regulation of genes involved in plant biomass 337 

degradation (Garrigues et al. 2021). This effect is likely due to a wide variety of variables that 338 

differ between solid and liquid media, including fungal cellular development, aeration, 339 

osmolarity, and substrate availability. The extent of the role of AmyR and its homologs in the 340 

regulation of sucrose and inulin utilization and the difference in the utilization of these substrates 341 

in solid as opposed to liquid media still requires additional investigation. 342 

Cutin utilization 343 

One of the barriers plant pathogenic fungi must overcome to infect plants is the water-344 

repellent plant cuticle, made up of the waxy polymers of hydroxy fatty acids cutin and cutan. 345 

Pathogenic fungi secrete cutinases to break down this polymer into fatty acid monomers, and 346 

cutinase expression is regulated by the transcription factors CTF1a/Ctf1 and CTF1b/Ctf2 in 347 

Fusarium species (Bravo-Ruiz et al. 2013; Li and Kolattukudy 1997; Li et al. 2002; Rocha et al. 348 

2008). CTF1a and CTF1b and their orthologs FarA/Far1 and FarB/Far2, respectively, also 349 

regulate utilization of both short and long chain fatty acids. However, the role of the 350 

CTF1a/FarA/Far1 and CTF1b/FarB/Far2 transcription factors in short chain versus long chain 351 
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fatty acid utilization differs somewhat between species (bin Yusof et al. 2014; Bravo-Ruiz et al. 352 

2013; Hynes et al. 2006; Li et al. 2002; Luo et al. 2016; Rocha et al. 2008; Roche et al. 2013; 353 

Sugui et al. 2008). Some fungal species also have a third homolog, FarC, whose function is 354 

unclear (Luo et al. 2016). While the roles of Ctf1/FarA/Far1 and Ctf2/FarB/Far2 in regulating 355 

lipid utilization are broadly conserved, the impact of these transcription factors on virulence 356 

varies among the plant pathogens Fusarium oxysporum, Aspergillus flavus, and M. oryzae (bin 357 

Yusof et al. 2014; Bravo-Ruiz et al. 2013; Li et al. 2002; Luo et al. 2016; Rocha et al. 2008). 358 

FarA and FarB may also play a role in mammalian pathogenesis, as the expression of these 359 

transcription factors is induced in response to neutrophils (Sugui et al. 2008). 360 

Lignin utilization 361 

FarA is also required for the utilization of the lignin component ferulic acid in A. niger 362 

(Arentshorst et al. 2022). Ferulic acid is a hydroxycinnamic acid that is metabolized by fungi 363 

through the CoA-dependent b-oxidative pathway, which is involved in fatty acid metabolism 364 

(Lubbers et al. 2021). Utilization of ferulic acid also requires the transcription factor FarD, which 365 

has some sequence similarity to FarA and FarB. However, unlike FarA and FarB, whose 366 

structures are typical for zinc binuclear cluster transcription factors, FarD contains a fungal 367 

specific transcription factor domain but lacks the zinc binuclear cluster domain that normally 368 

accompanies it (Arentshorst et al. 2022). Regulation of cinnamic acid utilization, another 369 

hydroxycinnamic acid lignin component, involves a different transcription factor in A. niger, SdrA 370 

(Lubbers et al. 2019a). SdrA regulates genes in a gene cluster responsible for the non-oxidative 371 

decarboxylation of cinnamic acid and sorbic acid (Lubbers et al. 2019a). Previous work showed 372 

that SdrA is also involved in regulating utilization of sorbic acid (Plumridge et al. 2010). Deletion 373 

of SdrA still allows for limited growth on both cinnamic acid and sorbic acid and some 374 

expression of several of the genes necessary for cinnamic and sorbic acid catabolism, so it is 375 

possible another transcription factor is also involved in the utilization of these organic acids 376 

(Lubbers et al. 2019a). 377 
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Utilization of plant-derived organic acids 378 

Filamentous fungi are capable of utilizing a number of additional plant-derived organic 379 

acids as carbon sources. Quinic acid is an organic acid found in plant leaves and fruits (Clifford 380 

et al. 2017). The genes for quinic acid utilization are found in a gene cluster in Ascomycete 381 

fungi. While the genes in this cluster are well conserved, the order of the genes within the 382 

cluster differs from species to species (Asch et al. 2021). The quinic acid utilization gene cluster 383 

includes genes that encode quinic acid utilization enzymes and a quinic acid permease along 384 

with two regulatory genes: an activator, qa-1F/qutA that encodes a zinc binuclear cluster 385 

transcription factor, and a repressor, qa-1S/qutR (Case et al. 1992; Case et al. 1977; Case et al. 386 

1978; Geever et al. 1989; Grant et al. 1988; Huiet 1984; Lamb et al. 1990; Whittington et al. 387 

1987). QA-1F/QutA activates all of the genes in the quinic acid utilization gene cluster, and the 388 

activity of QA-1F/QutA is repressed by QA-1S/QutR in the absence of an inducer (Case et al. 389 

1992). More recent genomic studies indicate that a number of additional genes outside of the 390 

quinic acid utilization gene cluster are also activated either directly or indirectly by QA-1F in 391 

response to quinic acid. One of these genes is the transcription factor gene far-2 (discussed 392 

above for its role in regulating fatty acid metabolism (Roche et al. 2013)), which may play a role 393 

in activating genes in response to quinic acid (Tang et al. 2011). Due to the tight regulation and 394 

careful characterization of the quinic acid utilization regulatory system, N. crassa qa-1F and qa-395 

1S are used as a powerful tool for precise control of gene expression in plants and animals 396 

(Persad et al. 2020; Potter and Luo 2011; Reis et al. 2018). 397 

Tannins, including tannic acid, are polyphenolic aromatic compounds found in bark and 398 

other plant tissues (Tong et al. 2021). Fungi secrete tannases to degrade tannic acid and 399 

release gallic acid, which can be utilized as a carbon source (Lubbers et al. 2019b; Shao et al. 400 

2020). In A. niger, expression of tannase and gallic acid utilization genes is repressed by TanX, 401 

which is a paralog of both the quinic acid utilization repressor QA-1S/QutR and the galacturonic 402 

acid utilization repressor GaaX (Arentshorst et al. 2021). Similar to the qa-1S/qutR and qa-403 



   
 

 18 

1F/qutA repressor-activator module, tanX is adjacent to the zinc binuclear cluster transcription 404 

factor gene tanR in the A. niger genome. TanR activates expression of tannase and gallic acid 405 

utilization genes, and the activity of TanR is repressed by TanX in the absence of an inducer. A 406 

fourth paralog of qa-1S/qutR, tanX, and gaaX exists in the A. niger genome whose role is yet to 407 

be elucidated (Arentshorst et al. 2021). 408 

Utilization of fermentation-derived carbon sources 409 

Filamentous fungi can also utilize nutrients produced by other microorganisms, including 410 

the common fermentation products ethanol and acetate. Ethanol utilization requires a 411 

specialized transporter and alcohol and aldehyde dehydrogenases, which are localized in a 412 

gene cluster regulated by the AlcR transcription factor (Fillinger and Felenbok 1996; Lockington 413 

et al. 1985). A number of carbon metabolites act as inducers for AlcR, including alcohols and 414 

threonine, which are converted to acetaldehyde, a toxic metabolite thought to be the true 415 

inducer of AlcR (Flipphi et al. 2002). 416 

Acetate utilization by filamentous fungi is regulated by FacB/ACU-15. Catabolism of 417 

acetate requires the glyoxylate shunt, and specifically isocitrate lyase, whose expression is 418 

regulated by the FacB/ACU-15 transcription factor (Bibbins et al. 2002; Todd et al. 1997). FacB 419 

appears to be important for fungal virulence, as Aspergillus fumigatus strains lacking facB have 420 

reduced morbidity in murine and insect infection models (Ries et al. 2021). However, isocitrate 421 

lyase was demonstrated to be dispensable for virulence in A. fumigatus (Schöbel et al. 2007), 422 

and transcriptomic data suggests FacB plays a broader regulatory role than simply acetate 423 

utilization (Ries et al. 2021). This raises the possibility that the reduced virulence of strains 424 

lacking facB may not strictly be due to an inability to utilize acetate. 425 

Scout enzyme activation 426 

Because plant cell wall components are large polymers, the genes necessary to utilize 427 

these carbohydrates are induced by soluble plant cell wall breakdown products (Wu et al. 2020; 428 

Znameroski et al. 2012). To release these soluble breakdown products, when no carbon source 429 
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is readily available, filamentous fungi are predicted to secrete low levels of plant cell wall 430 

degrading “scout” enzymes, so named because they are used by the fungus to “scout” the 431 

surrounding environment for available plant cell wall polymers. These scout enzymes are 432 

regulated, at least in part, by the transcription factor VIB-1 (Wu et al. 2020). VIB-1 is a member 433 

of the p53 superfamily and plays roles in several cellular processes, including utilization of 434 

polymeric carbon sources (Ivanova et al. 2017; Wu et al. 2020; Xiong et al. 2014), heterokaryon 435 

incompatibility, and self/nonself recognition in filamentous fungi (Dementhon et al. 2006; Xiang 436 

and Glass 2002). Expression of a number of genes encoding plant cell wall degrading enzymes, 437 

as well as clr-2 and pdr-2, are directly activated by VIB-1 (Wu et al. 2020). Additionally, we 438 

discuss a role for VIB-1 and its homolog XprG in protease regulation below. 439 

 440 

ACTIVATION OF NITROGEN UTILIZATION PATHWAYS 441 

During saprophytic and plant pathogenic growth, carbon is abundant, but nitrogen is 442 

limiting (Donofrio et al. 2006; Hao et al. 2021; Talbot et al. 1997). Filamentous fungi are capable 443 

of scavenging nitrogen from a variety of organic and inorganic sources. These include the 444 

preferred nitrogen sources glutamine, ammonium, and, for some fungi, glutamate, which can be 445 

imported and utilized with a limited repertoire of transporters and catabolic enzymes (Margelis et 446 

al. 2001). Nonpreferred nitrogen sources, including nitrate, nitrite, most amino acids, purines, 447 

amides, urea, and proteins, require production of a much more specialized and substantial array 448 

of transporters, catabolic enzymes, and, in the case of polymeric nitrogen sources, secreted 449 

enzymes (Huberman et al. 2021a; Marzluf 1997). Utilization of these nonpreferred nitrogen 450 

sources is regulated by a combination of pathway-specific transcription factors that activate 451 

genes in response to a particular nitrogen source and the more generalized transcription factor 452 

NIT-2/AreA, which activates genes in the absence of a preferred nitrogen source. We will 453 

discuss several known pathway-specific transcription factors (Fig. 1 and Table 1). 454 

Nitrate utilization 455 
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The most well-studied pathway-specific transcription factor is NIT-4/NirA, which controls 456 

nitrate utilization (Burger et al. 1991; Yuan et al. 1991). This transcription factor is regulated, at 457 

least in part, through nuclear localization in the presence of nitrate. In A. nidulans, NirA nuclear 458 

localization is mediated by the nuclear exportin KapK (also known as CrmA). In the absence of 459 

nitrate, a conserved methionine in the nuclear export signal is oxidized by a flavin-containing 460 

monooxygenase, FmoB, exposing the nuclear export signal (Gallmetzer et al. 2015). In the 461 

presence of nitrate, the methionine is reduced, and the interaction of KapK with NirA is 462 

disrupted, leading to nuclear localization (Bernreiter et al. 2007; Gallmetzer et al. 2015). A 463 

similar nitrate-dependent nuclear localization of NirA occurs in Fusarium fujikuroi (Pfannmüller 464 

et al. 2017a). In N. crassa, NIT-4 binds the promoters and regulates expression of eight genes 465 

associated with nitrate utilization (Chiang and Marzluf 1995; Fu et al. 1995; Huberman et al. 466 

2021a). Interestingly, activation of seven of these eight genes by NIT-4 occurs not only in 467 

response to nitrate but also in the absence of a nitrogen source, suggesting that NIT-4 may play 468 

a role in the activation of genes necessary for utilization of nonpreferred nitrogen sources when 469 

fungi are starved for nitrogen (Huberman et al. 2021a). 470 

Amino acid utilization 471 

Filamentous fungi can also utilize most amino acids as a nitrogen source. Several 472 

transcription factors are responsible for activating expression of amino acid utilization. However, 473 

only a limited number of transcription factors necessary for amino acid utilization have been 474 

identified thus far in filamentous fungi. In A. nidulans, the ArcA transcription factor induces 475 

expression of arginine catabolism genes in the presence of arginine (Bartnik and Weglenski 476 

1974; Empel et al. 2001). Transcript levels of arcA appear to be independent of the presence of 477 

arginine and a single point mutation (L60I) is sufficient to yield constitutive arginase expression 478 

and activity (Empel et al. 2001). In addition to ArcA, the pleiotropic regulators KaeA and RrmA 479 

regulate expression of arginine catabolic genes at the level of transcription and RNA stability, 480 

respectively (Dzikowska et al. 2015; Krol et al. 2013; Olszewska et al. 2007). 481 
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PrnA is a transcription factor that regulates, and is a member of, a proline utilization 482 

gene cluster in A. nidulans (Hull et al. 1989; Jones et al. 1981; Sharma and Arst 1985). Unlike 483 

NirA, which is regulated through nuclear localization, PrnA exists in the nucleus even in the 484 

absence of an inducer (Pokorska et al. 2000). However, PrnA can only bind its targets when 485 

proline is present (Gómez et al. 2002). Nucleosome rearrangement also contributes to the 486 

regulation of proline utilization genes, which is dependent on PrnA and other factors (García et 487 

al. 2004). Tyrosine utilization is regulated by HmgR in A. fumigatus (Keller et al. 2011; 488 

Schmaler-Ripcke et al. 2009). The tyrosine utilization gene cluster, which includes HmgR, is 489 

conserved in aspergilli (Greene et al. 2014). HmgR is also conserved throughout penicillia and 490 

in Talaromyces marneffei (formerly Penicillium marneffei), although it is not always found in the 491 

tyrosine utilization gene cluster (Boyce et al. 2015; Greene et al. 2014). 492 

In N. crassa, the regulatory roles of PrnA and HmgR are combined in a single 493 

transcription factor, AMN-1, which regulates proline, aromatic amino acid, and branched-chain 494 

amino acid utilization. AMN-1 has some sequence similarity to HmgR, although HmgR is not the 495 

closest homolog to AMN-1 in the aspergilli and T. marneffei (Huberman et al. 2021a). A clear 496 

homolog for PrnA does not exist in N. crassa. Neither the proline nor aromatic amino acid 497 

catabolic genes are contained in a gene cluster in N. crassa. However, AMN-1 binds the 498 

promoters and regulates most of the N. crassa homologs of the genes in the proline and 499 

tyrosine utilization gene clusters from aspergilli. AMN-1 activates genes necessary for amino 500 

acid catabolism not only in response to proline, aromatic amino acids, and branched-chain 501 

amino acids but also mannose (Huberman et al. 2021a). Intriguingly, the tyrosine utilization 502 

gene cluster in T. marneffei also contains a putative mannosidase (Boyce et al. 2015), 503 

suggesting the connection between mannose and amino acid catabolism may be conserved. 504 

This may indicate that cells use mannose as a signal for the presence of amino acids in the 505 

environment, perhaps because proteins secreted from eukaryotic cells are glycosylated with 506 
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mannose residues. However, further work will be necessary to investigate the connection 507 

between mannose and amino acid utilization. 508 

Purine utilization 509 

Purines are a nitrogen source for filamentous fungi whose utilization is regulated by the 510 

zinc binuclear cluster transcription factor PCO-1/UaY (Liu and Marzluf 2004; Suárez et al. 1995; 511 

Suárez et al. 1991). Both pco-1 in N. crassa and uaY in A. nidulans are expressed constitutively 512 

(Liu and Marzluf 2004; Suárez et al. 1991). UaY activity is induced by uric acid and 513 

dihydroorotic acid (Scazzocchio and Darlington 1968; Suárez et al. 1995), and, like many other 514 

zinc binuclear cluster transcription factors, UaY functions as a homodimer (Cecchetto et al. 515 

2012). Prior to induction, UaY can be found in both the cytoplasm and the nucleus. When A. 516 

nidulans cells are exposed to an inducer, UaY rapidly localizes entirely to the nucleus, which is 517 

necessary but not sufficient for UaY-mediated gene induction (Galanopoulou et al. 2014). 518 

Binding of UaY to DNA is at least partially dependent on the presence of an inducer 519 

(Oestreicher et al. 1997). Nicotinate (vitamin B3) is a nitrogen source for aspergilli that has 520 

some metabolic crosstalk with purine utilization (Bokor et al. 2022). The transcription factor 521 

HxnR regulates the three nicotinate utilization gene clusters in A. nidulans. This regulatory 522 

pathway is conserved in aspergilli, although the clustering of the genes varies between species 523 

(Ámon et al. 2017; Bokor et al. 2021). 524 

Protein utilization 525 

Proteins can serve as a nitrogen, carbon, and/or sulfur source. Thus, genes encoding 526 

proteases are activated in response to a number of stimuli, including nitrogen, carbon, or sulfur 527 

limitation, pH, and temperature (Dementhon et al. 2006; Hanson and Marzluf 1975; Jarai and 528 

Buxton 1994; Katz et al. 2006; Kitano et al. 2002; Snyman et al. 2019). Proteases are important 529 

during saprophytic growth, where they break down proteins from dead plant and animal matter, 530 

and during plant and human pathogenesis. In a subset of the aspergilli and penicillia, including 531 

A. niger, A. fumigatus, and A. oryzae but not A. nidulans, regulation of proteases and peptide 532 



   
 

 23 

transporters is accomplished by the transcription factor PrtT/PrtR (Ballester et al. 2019; Chen et 533 

al. 2014; Mizutani et al. 2008; Punt et al. 2008; Sharon et al. 2009; Tanaka et al. 2021). The 534 

prtT/prtR and amyR genes are very close to each other in the genome, and AmyR and 535 

PrtT/PrtR appear to have opposing roles in the regulation of some amylases and proteases 536 

(Chen et al. 2014). Indeed, AmyR appears to repress the expression of prtT and some protease 537 

genes in A. niger, suggesting an interesting crosstalk between utilization of proteins and starch 538 

(Huang et al. 2020). Along with the connection between protease and amylase production in A. 539 

niger, PrtT also plays a role in regulating iron uptake and ergosterol biosynthesis in A. fumigatus 540 

(Hagag et al. 2012). Although proteases are thought to play a role in fungal virulence, deletion 541 

of prtT does not affect virulence in Penicillium digitatum or A. fumigatus (Ballester et al. 2019; 542 

Sharon et al. 2009). 543 

Another transcription factor with a role in regulating protease gene expression is VIB-544 

1/XprG (Dementhon et al. 2006; Katz et al. 2006), which we discussed above for its role in 545 

activating expression of plant cell wall degrading “scout” enzymes. VIB-1 and XprG have a 546 

pleiotropic effect in N. crassa and A. nidulans, respectively, controlling a multitude of functions 547 

involved in fungal development, including cell fusion and sexual development (Dementhon et al. 548 

2006; Katz et al. 2013). Through the role of these orthologs in protease and plant cell wall 549 

degrading enzyme gene expression, VIB-1 and XprG are required for the fungal response to 550 

starvation (Katz et al. 2015; Katz et al. 2006; Wu et al. 2020). Surprisingly, despite the wide-551 

ranging role of XprG, neither deletion of xprG, nor deletion of both xprG and prtT, in A. 552 

fumigatus causes reduced virulence in immunocompromised mice (Shemesh et al. 2017). 553 

 554 

Carbon and Nitrogen Catabolite Repression 555 

Environmental niches occupied by filamentous fungi are nutritionally complex and rarely 556 

composed of a singular carbon and/or nitrogen source. As such, transcriptional regulatory 557 

mechanisms have evolved to prioritize utilization of easily catabolized, high-value nutrients over 558 



   
 

 24 

those that require more energy to catabolize (Fig. 2). Here we describe the known genetic 559 

mechanisms by which nutrients are prioritized. 560 

 561 

CARBON CATABOLITE REPRESSION 562 

When repressing, or preferred, carbon sources are available, fungi repress transcription 563 

of genes associated with uptake and catabolism of less preferred carbon sources. This 564 

mechanism of nutrient differentiation is referred to as carbon catabolite repression. Most 565 

catabolic pathways require both the presence of an activating signal and the absence of a 566 

repressing signal for robust transcription of genes associated with the transport and catabolism 567 

of less preferred carbon sources. In filamentous fungi, glucose, fructose, and, to a lesser extent, 568 

other mono- and di- saccharides induce carbon catabolite repression. These sugars are thus 569 

preferentially consumed in a mixed carbon environment over harder-to-catabolize sources, such 570 

as cellulose, or lower-value carbon sources, such as ethanol (Fig. 2).  571 

CRE-1/CreA/Cre1 is a major transcription factor mediating carbon catabolite repression 572 

The C2H2 zinc-finger transcription factor CRE-1/CreA/Cre1 is a major regulatory 573 

element mediating carbon catabolite repression in all filamentous fungal species in which 574 

carbon catabolite repression has been studied (Adnan et al. 2017; Arst and Cove 1973; Benocci 575 

et al. 2017; Dowzer and Kelly 1991; Hong et al. 2021; Huberman et al. 2016; Ries et al. 2018; 576 

Strauss et al. 1995; Sun and Glass 2011). Disruption of cre-1/creA/cre1 results in a loss of 577 

glucose-mediated repression of alternative carbon source utilization. The primary consensus 578 

binding motif of CreA/CRE-1 is SYGGRG and TSYGGGG in A. nidulans and N. crassa, 579 

respectively (Chen et al. 2022; Kulmburg et al. 1993; Strauss et al. 1995; Wu et al. 2020). 580 

Examination of RNA sequencing (RNAseq) data, electrophoretic mobility shift assays, 581 

chromatin-immunoprecipitation sequencing (ChIPseq), and DNA affinity purification sequencing 582 

(DAPseq) experiments revealed that CreA/CRE-1 utilizes a hierarchical mechanism to regulate 583 

carbon catabolite repression (Antonieto et al. 2014; Beattie et al. 2017; Chen et al. 2022; García 584 
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et al. 2004; Kulmburg et al. 1993; Wu et al. 2020). CreA/CRE-1 represses only a portion of the 585 

enzymes in any given catabolic pathway and rather leverages repression of transporters and 586 

activating transcription factors to prevent intracellular signaling and subsequent activation of 587 

downstream catabolic genes (Chen et al. 2022; Wu et al. 2020). Curiously, some evidence has 588 

suggested that CRE-1 in N. crassa can also act as an activator of gene expression under 589 

carbon starvation conditions (Huberman et al. 2017) 590 

Early carbon catabolite repression studies investigating CreA in A. nidulans, combined 591 

with mechanistic studies on the S. cerevisiae functional homolog of CreA, Mig1, led to a 592 

canonical model of carbon catabolite repression regulation (Arst and Cove 1973; Bailey and 593 

Arst 1975; De Vit et al. 1997; Shroff et al. 1997; Treitel et al. 1998; Vautard-Mey and Fèvre 594 

2000). In this model, CreA is localized to the nucleus when preferred carbon sources are 595 

available and actively represses transcription of genes associated with nonpreferred carbon 596 

source utilization. When preferred carbon sources are unavailable, CreA is thought to be 597 

phosphorylated by the AMP-activated kinase SnfA and sequestered in the cytoplasm, relieving 598 

transcriptional repression. Supporting the canonical model of regulation, altered localization of 599 

CreA as a function of carbon source has been observed in several studies, with the degree of 600 

nuclear localization correlating with the strength of repression (Brown et al. 2013; Cupertino et 601 

al. 2015; de Assis et al. 2021; de Assis et al. 2018b; Hong et al. 2021; Ries et al. 2016; Vautard-602 

Mey and Fèvre 2000). Additionally, phosphoproteomics, molecular genetics, and assays of 603 

phosphorylation via western blotting have demonstrated that CreA activity is regulated by 604 

phosphorylation (Alam et al. 2017; de Assis et al. 2021).  605 

In contrast to the canonical model, more recent data on carbon catabolite repression in 606 

filamentous fungi leveraging ChIPseq, DAPseq, RNAseq, and molecular techniques suggest 607 

that CreA has a significantly expanded functional role relative to Mig1 in S. cerevisiae and is 608 

regulated in manners beyond what is described in the canonical model (Beattie et al. 2017; 609 

Chen et al. 2022; Hong et al. 2021; Wu et al. 2020). Expression of creA at the transcript level 610 
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varies by carbon source, is highly dynamic over short time intervals, and appears to be 611 

autoregulated by CreA itself (Chen et al. 2022; Strauss et al. 1999). Despite this transcriptional 612 

regulation, there is a lack of correlation between transcript, protein, and activity levels, 613 

suggesting a substantial role for posttranscriptional and posttranslational regulation (Roy et al. 614 

2008; Strauss et al. 1999). Overexpression of a C-terminal GFP-tagged CreA protein causes 615 

constitutive nuclear localization but normal repression/derepression function, indicating that 616 

nuclear localization is not sufficient to induce repression (Roy et al. 2008). While the canonical 617 

model involves phosphorylation-mediated regulation, more recent studies have shown that 618 

rather than a binary model of CreA phosphorylation, a number of phosphorylation states have 619 

been observed in phosphoproteomic studies comparing repressing and non-repressing 620 

conditions (Alam et al. 2017; de Assis et al. 2021; Ribeiro et al. 2019). Further, no single 621 

mutation of a phosphorylation site fully accounts for regulation of CreA function. Single amino 622 

acid phospho-null and phospho-mimetic mutants have demonstrated that the regulatory role of 623 

CreA/Cre1/CRE-1 phosphorylation differs depending on the specific phosphorylation site 624 

(Cziferszky et al. 2002; de Assis et al. 2021; Han et al. 2020; Ribeiro et al. 2019; Vautard-Mey 625 

and Fèvre 2000). Supporting these differing roles for phosphorylation sites, CreA protein 626 

domains have varying regulatory roles (Ries et al. 2016; Roy et al. 2008; Shroff et al. 1997). 627 

However, in several studies investigating the roles of various CreA/Cre1 domains and 628 

phosphorylation sites, a creA/cre1 null strain was not included in functional assays, complicating 629 

interpretation of the degree of impact of each mutation.  630 

Further expanding our understanding of gene regulation by CreA, a recent study utilizing 631 

ChIPseq and RNAseq to thoroughly examine the regulatory role of CreA in A. nidulans showed 632 

CreA is constitutively localized to the nucleus (Chen et al. 2022). CreA occupied most promoter 633 

binding sites under both repressing and derepressing conditions, with the intensity of binding 634 

largely correlated with total CreA protein abundance. These data beg the question of whether 635 

prior studies observed a true nuclear to cytoplasmic shift or simply a decrease in total CreA 636 
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levels below the limitations of the microscopy setups used. Alternatively, it is possible the 637 

ChIPseq promoter binding signal was due to CreA nuclear localization and promoter occupancy 638 

in a small subpopulation of nuclei, as frequently microscopy experiments report at least a small 639 

population of nuclei containing CreA in many conditions. This conflict calls for further study to 640 

differentiate to what degree localization, protein levels, population heterogeneity, or some 641 

combination of all three are involved in CreA-mediated regulation. Additionally, if CreA is 642 

constitutively nuclear in some or all nuclei regardless of condition, this further brings into 643 

question the regulatory role of specific phosphorylation states, condition dependent CreA 644 

protein binding partners, and what, if any, other mechanisms contribute to CreA function.  645 

Other Regulators of Carbon Catabolite Repression 646 

Beyond creA/cre1/cre-1, several kinases and genes associated with ubiquitination have 647 

been implicated in regulating carbon catabolite repression. While an in-depth examination into 648 

the role of the AMP-activated kinase SnfA/Snf1/SNF-1 in carbon catabolite repression is still 649 

needed, studies in several plant pathogenic species have demonstrated a role for Snf1 in 650 

carbon catabolite repression-related phenotypes. These include production of plant cell wall 651 

degrading enzymes, polysaccharide utilization, and growth on non-repressing carbon sources, 652 

as well as roles in plant virulence (Tonukari et al. 2000; Yi et al. 2008; Yu et al. 2014). In A. 653 

nidulans, loss of snfA increases the proportion of CreA-containing nuclei and glucose-mediated 654 

repression (Brown et al. 2013; de Assis et al. 2020). 655 

Several components of the cyclic AMP/protein kinase A and hyperosmotic response 656 

mitogen-activated protein (MAP) kinase pathways have also been implicated in carbon 657 

catabolite repression and regulation of carbon metabolism broadly (Brown et al. 2013; de Assis 658 

et al. 2015; de Assis et al. 2020; Huberman et al. 2017; Kunitake et al. 2019; Kunitake et al. 659 

2022; Ribeiro et al. 2019; Schalamun et al. 2023; Wang et al. 2013; Ziv et al. 2008). In 660 

aspergilli, the catalytic subunit of the protein kinase A complex, PkaC1, physically interacts with 661 

SakA, the central kinase of the hyperosmotic response pathway to impact carbon metabolism 662 
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(de Assis et al. 2018a; de Assis et al. 2020; Ribeiro et al. 2019). Repression of genes encoding 663 

plant cell wall degrading enzymes is modulated by osmolarity in N. crassa in a hyperosmolarity 664 

response pathway-dependent manner (Huberman et al. 2017). However, any potential 665 

interaction of these pathways with CreA appears to be indirect. It remains unclear what 666 

downstream transcription factors are responsible for the role of these pathways in carbon 667 

catabolite repression and carbon metabolism. 668 

In addition to kinases, several genes associated with ubiquitination also appear to have 669 

a role in either carbon catabolite repression or the related concept of carbon catabolite 670 

inactivation in which catabolism of preferred and nonpreferred carbon sources is regulated at 671 

the posttranslational level. The F-box family of proteins target proteins for poly-ubiquitination 672 

and subsequent proteasome degradation (Nguyen and Busino 2020). Several F-box proteins 673 

impact carbon catabolite repression/carbon catabolite inactivation regulation and carbon source 674 

prioritization in A. nidulans and N. crassa (de Assis et al. 2018b; Gabriel et al. 2021). 675 

Further implicating ubiquitination in carbon catabolism regulation are the CreB-D 676 

proteins in A. nidulans. The deubiquitinating enzyme CreB and the WD40-repeat protein CreC 677 

interact to form a deubiquitinating complex (Lockington and Kelly 2002; Ries et al. 2016). Loss 678 

of either creB or creC in A. nidulans results in decreased glucose-mediated repression (Hynes 679 

and Kelly 1977; Lockington and Kelly 2001; Todd et al. 2000). Additionally, loss of function 680 

mutations in the ubiquitinating enzyme gene creD repress the creB and creC loss of function 681 

phenotypes (Boase and Kelly 2004; Kelly and Hynes 1977). Despite a clear regulatory role for 682 

ubiquitination, it was determined that the CreB/C complex does not physically interact with CreA 683 

(Alam et al. 2017). Furthermore, when CreA was tested for ubiquitination by mass spectrometry 684 

by two independent groups, neither group found evidence of CreA ubiquitination (Alam et al. 685 

2017; de Assis et al. 2021). The lack of CreA ubiquitination signatures calls for examinations 686 

into whether carbon catabolite inactivation is occurring in filamentous fungi, what mechanisms 687 

and proteins may be subject to ubiquitination and subsequent protein degradation, and if these 688 
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mechanisms are conserved across species. Conservation of the specific ubiquitination 689 

regulatory mechanisms may not be strong. Some F-box proteins identified in N. crassa and A. 690 

nidulans do not have clear homologs in the other species (de Assis et al. 2018b; Gabriel et al. 691 

2021). Additionally, N. crassa mutants lacking the creB and creD homologs do not have a clear 692 

carbon catabolite repression defect (Xiong et al. 2014). 693 

 694 

NITROGEN CATABOLITE REPRESSION 695 

Unlike carbon catabolite repression, in which the major known regulator is a 696 

transcriptional repressor, the major known regulator of nitrogen catabolite repression (also 697 

called nitrogen metabolite repression) is the GATA transcriptional activator NIT-2/AreA (NRE in 698 

Penicillium chrysogenum and NUT1 in M. oryzae) (Caddick et al. 1986; Froeliger and Carpenter 699 

1996; Fu and Marzluf 1990; Haas et al. 1995; Tudzynski et al. 1999). When nonpreferred 700 

nitrogen sources are present in the absence of the preferred nitrogen sources ammonium, 701 

glutamine, or glutamate, NIT-2/AreA activates expression of genes necessary for utilization of 702 

nonpreferred nitrogen sources. Thus, utilization of nonpreferred nitrogen sources requires 703 

activation of genes not only by the pathway-specific transcription factors discussed above, but 704 

also the transcriptional activator NIT-2/AreA (Fig. 2). 705 

NMR/NmrA-mediated regulation of nitrogen catabolite repression 706 

Regulation of NIT-2/AreA occurs in a number of ways, which differ somewhat from 707 

species to species. The most conserved mechanism of NIT-2/AreA regulation is through 708 

interaction with the repressor NMR (sometimes called NMR-1)/NmrA (Andrianopoulos et al. 709 

1998; Young et al. 1990). NMR/NmrA lacks a DNA binding domain and regulates gene 710 

expression through direct interactions with NIT-2/AreA (Lamb et al. 2004; Xiao et al. 1995). In 711 

the presence of preferred nitrogen sources, NMR/NmrA binds to the C-terminal tail and zinc 712 

finger DNA binding domain of NIT-2/AreA, blocking the ability of AreA to bind DNA and activate 713 

target genes (Kotaka et al. 2008; Pan et al. 1997; Xiao et al. 1995). Although this mechanism of 714 
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NIT-2/AreA regulation is well conserved, the extent to which NMR/NmrA represses NIT-2/AreA 715 

differs between species. Nmr plays only a slight role in repressing the activity of AreA in F. 716 

fujikuroi, even though it interacts with AreA and can complement N. crassa and A. nidulans 717 

nmr/nmrA mutants (Mihlan et al. 2003; Schönig et al. 2008). 718 

There are a number of speculations for how the NMR/NmrA-mediated repression of 719 

NIT2/AreA is regulated mechanistically and the identity of the metabolic signal to which 720 

NMR/NmrA responds. NmrA is absent in cells experiencing nitrogen starvation, and NmrA 721 

proteins levels are regulated by nitrogen source, with high levels of NmrA in cells exposed to the 722 

preferred nitrogen source ammonium and low levels of NmrA in cells exposed to nitrate (Zhao et 723 

al. 2010). The expression of nmrA is directly activated by the bZIP transcription factor MeaB in 724 

response to preferred nitrogen sources (Wong et al. 2007). Along with this transcriptional 725 

regulation, the NmrA protein product is also regulated by protease degradation during nitrogen 726 

starvation (Zhao et al. 2010). PnmB is one of the proteases responsible for degradation of NmrA 727 

during nitrogen starvation. PnmB-mediated degradation of NmrA increases the speed of AreA 728 

derepression, and the expression of pnmB is activated by AreA during nitrogen starvation, 729 

creating a positive feedback loop (Li et al. 2021a). Interestingly, there is no N. crassa homolog 730 

of PnmB, suggesting that this method of NMR/NmrA regulation may be specific to a subset of 731 

filamentous fungi. 732 

Initially, it was hypothesized that NMR/NmrA might bind glutamine, the primary nitrogen 733 

source for filamentous fungi. However, careful biochemical analysis showed that NMR/NmrA 734 

does not bind glutamine, glutamate, or ammonium, but rather the dinucleotide cofactors NAD+ 735 

and NADP+ (Lamb et al. 2003). Despite this observation, minimal data currently exists showing 736 

that this binding has biological significance in the regulation of nitrogen catabolite repression. 737 

Binding of NmrA to AreA is possible regardless of whether NmrA is bound to NAD+/NADP+, 738 

and the structure of the NmrA-AreA complex is unaffected by NmrA binding to NAD+/NADP+ 739 

(Kotaka et al. 2008). If NAD+/NADP+ binding of NMR/NmrA does have biological significance in 740 
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nitrogen catabolite repression, it is possible that it functions to limit expression of nitrogen 741 

catabolic enzymes that require NADH/NADPH cofactors when the concentrations of these 742 

metabolites are low (Wilson et al. 2010).  743 

Other mechanisms of NIT-2/AreA regulation 744 

Despite sufficient conservation of the NIT-2 and AreA proteins that nit-2 can complement 745 

areA mutants (Davis and Hynes 1987), regulation of NIT-2/AreA by mechanisms other than 746 

NMR/NmrA binding appears significantly less conserved. In A. nidulans, the areA transcript is 747 

regulated posttranscriptionally (Morozov et al. 2001). In the presence of ammonium and 748 

glutamine, the poly-A tail of the areA transcript is shortened, leading to areA mRNA degradation 749 

(Morozov et al. 2000). The mRNA degradation is dependent on a sequence in the 3’ region of 750 

the areA mRNA, which is recognized by the mRNA stability regulatory protein RrmA. This 751 

sequence is sufficient to cause mRNA degradation in an RrmA dependent manner in response 752 

to preferred nitrogen sources (Krol et al. 2013; Platt et al. 1996). Interestingly, unlike areA, nit-2 753 

mRNA stability does not appear to be regulated in response to nitrogen conditions (Tao and 754 

Marzluf 1999), and transcriptomics across a broad range of nitrogen sources indicated limited 755 

nit-2 transcriptional regulation (Huberman et al. 2021a). However, NIT-2 protein levels are 756 

elevated in response to nonpreferred nitrogen sources (Tao and Marzluf 1999). 757 

NIT-2/AreA-mediated gene activation is also regulated by localization. During nitrogen 758 

starvation, NIT-2/AreA localizes to the nucleus (Bernardes et al. 2017; Todd et al. 2005). A. 759 

nidulans AreA has six nuclear localization signals that direct AreA to the nucleus – five classical 760 

nuclear localization signals and one bipartite nuclear localization signal (Hunter et al. 2014). 761 

These nuclear localization signals show redundancy with respect to AreA nuclear accumulation, 762 

but the bipartite nuclear localization signal is required for AreA function (Hunter et al. 2014). 763 

Fusarium graminearum AreA has only three nuclear localization signals, which includes a 764 

bipartite nuclear localization signal that is required for AreA nuclear localization (Hou et al. 765 

2015). AreA import into the nucleus in response to nitrogen starvation is relatively slow, taking 766 
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several hours, while export from the nucleus in response to the presence of nitrogen happens 767 

over a matter of minutes and is mediated by the nuclear exportin KapK (CrmA) (Todd et al. 768 

2005). Import of NIT-2 into the nucleus may be mediated by the highly conserved importin-a 769 

(Bernardes et al. 2017). Surprisingly, despite a role for AreA-mediated activation during 770 

exposure to nonpreferred nitrogen sources, AreA does not appear to be localized to the nucleus 771 

at detectable levels during exposure to the nonpreferred nitrogen sources proline, alanine, or 772 

uric acid in A. nidulans (Todd et al. 2005). However, AreA is necessary for utilization of proline 773 

when preferred carbon sources are present (Arst and Cove 1973), and RNAseq on proline 774 

showed NIT-2-mediated transcriptional regulation of target genes in N. crassa (Huberman et al. 775 

2021a). Although it is potentially possible these NIT-2-mediated changes in gene expression 776 

occur through indirect means, promoter binding data by NIT-2 suggests this regulation occurs 777 

through binding of promoters in the N. crassa nucleus during exposure to proline (Huberman et 778 

al. 2021a). The mechanisms and species-level variation of NIT-2/AreA nuclear localization and 779 

posttranscriptional/posttranslational modification require further study. 780 

Interplay of NIT-2/AreA with pathway-specific transcription factors 781 

Much of the early work describing the interplay between NIT-2/AreA-mediated gene 782 

activation with pathway-specific transcription factors focused on the activation of genes 783 

responsible for nitrate utilization. Both NIT-2/AreA and the pathway-specific transcription factor 784 

NIT-4/NirA bind the promoter of the nitrate reductase gene nit-3/niaD (Chiang and Marzluf 1995; 785 

Narendja et al. 2002). This may be due, at least in part, to the role of AreA in opening the 786 

chromatin in the niaD promoter (Muro-Pastor et al. 1999). There are also data suggesting that 787 

NIT-2 and NIT-4 may physically interact (Feng and Marzluf 1998), although there is conflicting 788 

evidence surrounding this observation (Xiao et al. 1995). 789 

A recent systems biology study investigating genome-wide NIT-2 regulation and 790 

promoter binding demonstrated that binding of both NIT-2 and a pathway-specific transcription 791 

factor to the same promoter may be mainly limited to a small number of nitrate-responsive 792 
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genes (Huberman et al. 2021a). NIT-2 and the amino acid utilization regulating transcription 793 

factor AMN-1 bind almost entirely separate promoters, with only a single gene directly 794 

coregulated by these two transcription factors (Huberman et al. 2021a). The genes directly 795 

regulated by NIT-2/AreA are enriched for transporters in a manner similar to that of the targets 796 

of the carbon catabolite regulator CRE-1/CreA, suggesting that a major mechanism of both 797 

nitrogen and carbon catabolite repression is limiting import of nonpreferred nutrients that may 798 

act as signaling molecules (Chen et al. 2022; Huberman et al. 2021a; Schönig et al. 2008; Wu 799 

et al. 2020). While genes encoding nitrogen transporters are mainly regulated by NIT-2/AreA, 800 

genes encoding catabolic enzymes tend to be directly regulated by pathway-specific 801 

transcription factors. This regulatory pattern likely accounts for why both NIT-2/AreA and 802 

pathway-specific transcription factors are necessary for utilization of nonpreferred nitrogen 803 

sources (Huberman et al. 2021a). 804 

Other regulators of nitrogen catabolite repression 805 

A few additional transcription factors have also been implicated in the regulation of 806 

nitrogen catabolite repression. The zinc binuclear cluster transcription factor TamA plays a 807 

minor role in nitrogen catabolite repression as an AreA co-activator and directly activates the 808 

NADP-glutamate dehydrogenase in a nitrogen source-dependent fashion (Davis et al. 1996; 809 

Downes et al. 2014). Another GATA transcription factor, AreB, plays a minor role in repressing 810 

utilization of nonpreferred nitrogen sources in the presence of preferred nitrogen sources (Wong 811 

et al. 2009), and in F. fujikuroi AreB directly interacts with AreA during nitrogen starvation 812 

(Michielse et al. 2014). However, the role of AreB and its N. crassa homolog ASD-4 is 813 

pleiotropic. In A. nidulans, AreB has roles in asexual development and conidial germination and 814 

regulates transcription factors with roles in both carbon and nitrogen metabolism (Chudzicka-815 

Ormaniec et al. 2019; Wong et al. 2009). N. crassa ASD-4 regulates sexual development, 816 

including ascus and ascospore development but does not appear to play a role in nitrogen 817 

regulation (Feng et al. 2000). F. fujikuroi AreB regulates significant numbers of genes 818 
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regardless of nitrogen sufficiency including substantial numbers of transcription factors 819 

(Pfannmüller et al. 2017b). The M. oryzae AreB/ASD-4 homolog Asd4 is bound by all three M. 820 

oryzae NMR homologs and plays a role in regulating appressorium formation and genes 821 

involved in nitrogen assimilation (Marroquin-Guzman and Wilson 2015; Wilson et al. 2010). In 822 

the entomopathogenic fungus, Metarhizium acridum, the AreB homolog plays a role in 823 

appressorium formation and virulence and a minor role in utilization of both the preferred 824 

nitrogen sources glutamine and glutamate and the nonpreferred nitrogen sources nitrate and 825 

proline (Li et al. 2021b). 826 

 827 

Conclusions 828 

Regulation of carbon and nitrogen metabolism in filamentous fungi involves a 829 

hierarchical combination of broad-acting repression systems and more specific activating 830 

transcription factors. While substantial advances in our understanding of these regulatory 831 

systems have been achieved, much remains to be known and several conflicts exist within the 832 

published literature. The diversity of environmental niches occupied by filamentous fungi 833 

logically implies that the intricacies of nutrient sensing and regulation likely vary across 834 

phylogenetic distances and lifestyles. However, the bulk of our understanding of these topics at 835 

the genetic and molecular levels derives from a small number of Ascomycete species. Thus, 836 

thorough examinations across more phylogenetically diverse fungi could yield novel insights into 837 

the physiological, evolutionary, and ecological roles of nutrient sensing and utilization, as well as 838 

potentially clarify some of the literary conflicts. 839 

Putative links between the regulation of carbon and nitrogen utilization have long been 840 

noted. A major regulator of carbon catabolite repression, creA, was originally identified in a 841 

suppressor screen for an inability to utilize proline or acetamide as a nitrogen source by an A. 842 

nidulans strain lacking a functional areA gene (Arst and Cove 1973). Despite these and 843 

subsequent observations, very little is known regarding the regulatory links between various 844 
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nutrients. Recent data surveying transcriptional profiles across diverse nutrient sources suggest 845 

cross-regulation of nutrient utilization likely goes beyond carbon and nitrogen to include other 846 

nutrient regulatory systems, including sulfur, phosphorous, and micronutrients (Huberman et al. 847 

2021a; Huberman et al. 2021b; Wu et al. 2020). Future insights into the diversity of nutrient 848 

regulatory systems and cross-regulation of nutrients may have substantial applications ranging 849 

from improved and expanded industrial use of fungi to the development of novel pathogen 850 

prevention and treatment strategies for clinical and agricultural use. 851 

  852 
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Figure legends 853 

 854 

Fig. 1 Activating transcription factors respond to specific nutrient sources. The signal for the 855 

presence of a nonpreferred nutrient is either the nutrient itself (small molecules), a soluble 856 

breakdown product of the nutrient (polymers), or a modified version of the nutrient or soluble 857 

breakdown product. These signals are sensed using extracellular or intracellular receptors, 858 

which directly or indirectly activate transcription factors (TF) through upregulation of their 859 

transcription, posttranslational modifications, conformational changes upon binding an inducer, 860 

and/or protein-protein interactions. Activated transcription factors go on to activate the 861 

expression of genes necessary to utilize the specific nutrient source including secreted enzyme 862 

genes, catabolic genes, and transporter genes. Dotted lines indicate mechanisms which vary 863 

from pathway to pathway and/or for which data is inferred genetically but for which biochemical 864 

data is not necessarily available (or not available for all pathways). Solid lines indicate 865 

mechanisms with direct support from published literature. 1. Extracellular receptor; 2. 866 

Transporter; 3. Intracellular receptor; 4. The monomer and molecule represent the inducer 867 

which can be a monomer, oligomer, or metabolic derivative or downstream catabolic product of 868 

the nutrient; 5. Transcription factor in an inactive form; 6. Transcription factor in an active form; 869 

*Transcription factors can be regulated entirely by expression levels and translated in an active 870 
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form directly or regulated by a combination of expression and/or posttranslational 871 

modifications/conformational changes. 872 

  873 
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 874 

Fig. 2 Carbon and nitrogen catabolite repression systems repress or fail to activate, 875 

respectively, the expression of genes necessary for utilization of nonpreferred nutrient sources 876 

when preferred nutrient sources are available. CRE-1/CreA/Cre1, a major regulator of carbon 877 

catabolite repression, is activated through posttranslational modification and, to a lesser extent, 878 

transcriptional activation in response to the presence of glucose and other preferred carbon 879 

sources. Activated CRE-1/CreA/Cre1 represses expression of genes necessary to utilize 880 

nonpreferred carbon sources with a focus on transcriptional repression of activating 881 

transcription factor (TF) genes and transporter genes. NIT-2/AreA is a major regulator of 882 

nitrogen catabolite repression. NIT-2/AreA activates expression of genes necessary for 883 

utilization of nonpreferred nitrogen sources, particularly transporter genes, in the absence of 884 

preferred nitrogen sources. When preferred nitrogen sources are present, NIT-2/AreA activity is 885 

inhibited by NMR/NmrA, and NIT-2/AreA-activated genes are not expressed. Both carbon and 886 

nitrogen catabolite repression focus on regulation of genes involved in propagating signals that 887 

indicate the presence of a nonpreferred nutrient source, including transporter and transcription 888 

factor genes. Dotted lines indicate mechanisms for which data is inferred genetically but for 889 

which biochemical data is not necessarily available and multiple mechanisms may be possible. 890 

Solid lines indicate pathways with direct support from published literature. Thicker solid lines 891 
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from activated CRE-1/CreA/CRE1 and NIT-2/AreA indicate a larger percentage of that class of 892 

genes is directly regulated by that transcription factor. Activators are indicated in blue, and 893 

repressors are indicated in red. 1. Extracellular receptor; 2. Transporter; 3. Intracellular receptor; 894 

4. Preferred nutrient source or metabolic derivative or downstream catabolic product of the 895 

preferred nutrient source; 5. Transcription factor in an inactive form; 6. Transcription factor in an 896 

active form. 897 

  898 
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Table 1. Activating transcription factors of nutrient utilization pathways discussed in this review. 899 

Single horizontal lines group orthologs. Double horizontal lines group transcription factors that 900 

activate genes necessary to utilize a particular nutrient. 901 

Nutrient 
Transcription 
factor Species Citation 

Cellulose CLR-1 N. crassa (Coradetti et al. 2012) 

 ClrA Aspergilli (Coradetti et al. 2012) 

 CLR-2 N. crassa (Coradetti et al. 2012) 

 ClrB Aspergilli (Coradetti et al. 2012) 
  P. oxalicum (Li et al. 2015) 

  T. thermophilus (Zhang et al. 2022) 

 ManR A. oryzae (Ogawa et al. 2013) 

 CxrA P. oxalicum (Yan et al. 2017) 

 Ace3 T. reesei (Hakkinen et al. 2014) 

 Xyr1 T. reesei (Stricker et al. 2006) 
 XlnR P. oxalicum (Li et al. 2015) 

  some Aspergilli (van Peij et al. 1998a) 
Xylan XLR-1 N. crassa (Sun et al. 2012) 

 XlnR Aspergilli (van Peij et al. 1998a) 

  P. oxalicum (Li et al. 2015) 
 Xyr1 T. reesei (Stricker et al. 2006) 

  T. thermophilus (Wang et al. 2015) 
Arabinan ARA-1 N. crassa (Wu et al. 2020) 

 Ara1 T. reesei (Benocci et al. 2018) 

  M. oryzae (Klaubauf et al. 2016) 

 AraR Aspergilli (Battaglia et al. 2011) 
Mannan CLR-2 N. crassa (Samal et al. 2017) 
 ManR A. oryzae (Ogawa et al. 2012) 

Pectin PDR-1 N. crassa (Thieme et al. 2017) 
 RhaR Aspergilli (Gruben et al. 2014; Pardo and Orejas 2014) 

 PDR-2 N. crassa (Wu et al. 2020) 

 GaaR Aspergilli (Alazi et al. 2016) 

  B. cinerea (Zhang et al. 2016) 
Inulin InuR Aspergilli (Yuan et al. 2008) 
Starch COL-26 N. crassa (Xiong et al. 2017) 

 BglR T. reesei (Nitta et al. 2012) 
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 ART1 Fusarium sp. (Oh et al. 2016) 

 AmyR Aspergilli (Gomi et al. 2000) 
  Penicillia (Liu et al. 2013) 
Cutin/Fatty acids CTF1a Fusarium solani (Li and Kolattukudy 1997) 
 Ctf1 F. oxysporum (Rocha et al. 2008) 

 FAR-1 N. crassa (Roche et al. 2013) 

 Far1 M. oryzae (bin Yusof et al. 2014) 
 FarA Aspergilli (Hynes et al. 2006) 

 CTF1b F. solani (Li et al. 2002) 
 Ctf2 F. oxysporum (Bravo-Ruiz et al. 2013) 

 FAR-2 N. crassa (Roche et al. 2013) 

 Far2 M. oryzae (bin Yusof et al. 2014) 
 FarB Aspergilli (Hynes et al. 2006) 
Tannin TanR A. niger (Arentshorst et al. 2021) 

Galactose GalR Aspergilli (Christensen et al. 2011) 

 GalX A. nidulans (Christensen et al. 2011) 

 ARA-1 N. crassa (Wu et al. 2020) 

 Ara1 T. reesei (Benocci et al. 2018) 
Maltose MalR A. oryzae (Hasegawa et al. 2010) 
Sucrose InuR Aspergilli (Yuan et al. 2008) 
Ferulic acid FarA A. niger (Arentshorst et al. 2022) 

 FarD A. niger (Arentshorst et al. 2022) 
Cinnamic acid SdrA A. niger (Lubbers et al. 2019a) 

Sorbic acid SdrA Aspergilli (Plumridge et al. 2010) 
Quinic acid QA-1F N. crassa (Huiet 1984) 
 QutA Aspergilli (Grant et al. 1988) 

Ethanol AlcR Aspergilli (Lockington et al. 1985) 
Acetate ACU-15 N. crassa (Bibbins et al. 2002) 
 FacB Aspergilli (Todd et al. 1997) 

Proteins PrtT some Aspergilli (Punt et al. 2008) 
  Penicillia (Chen et al. 2014) 

 PrtR A. oryzae (Mizutani et al. 2008) 

 VIB-1 N. crassa (Dementhon et al. 2006) 

 XprG Aspergilli (Katz et al. 2006) 
Nitrate NIT-4 N. crassa (Yuan et al. 1991) 

 NirA Aspergilli (Burger et al. 1991) 
Proline AMN-1 N. crassa (Huberman et al. 2021a) 
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 PrnA Aspergilli (Hull et al. 1989) 
Tyrosine AMN-1 N. crassa (Huberman et al. 2021a) 

 HmgR Aspergilli (Keller et al. 2011) 
  Penicillia (Greene et al. 2014) 

  T. marneffei (Boyce et al. 2015) 
Branched chain 
amino acids AMN-1 N. crassa (Huberman et al. 2021a) 
Arginine ArcA A. nidulans (Empel et al. 2001) 
Purines PCO-1 N. crassa (Liu and Marzluf 2004) 

 UaY Aspergilli (Suárez et al. 1995) 
Nicotinate HxnR Aspergilli (Ámon et al. 2017) 

 902 
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