Supplemental Materials

Molecular Biology of the Cell

Lewis *et al*.

Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants Lewis AG, Caldwell R, Rogers JV, Ingaramo M, Wang RY, Soifer I, Hendrickson DG, McIsaac RS, Botstein D, Gibney PA

SUPPLEMENTAL INFORMATION

Supplemental Figure 1. Comparison of growth characteristics for final and intermediate ETC mutants.

Supplemental Figure 2. Transcription factor activities for gene expression data in Figure 3.

Supplemental Figure 3. Investigation of nutrient limitation in starvation-induced death of ETC mutants in YNB+glucose.

Supplemental Figure 4. Comparison of growth characteristics of individual suppressor mutants.

Supplemental Figure 5. Bud index data for ETC mutants and suppressor mutants used for gene expression data in Figure 6.

Supplemental Figure 6. Transcription factor activities for gene expression data used in Figure 6.

Supplemental Figure 7. Calibration curve for pHluorin2.

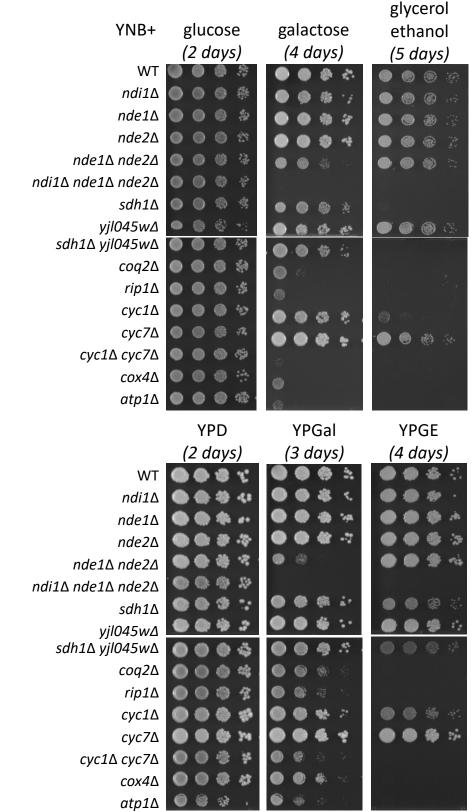
Supplemental Figure 8. Calibration curve for mScarlet.

Supplemental Figure 9. ETC suppressors partially restore intracellular pH homeostasis based on mScarlet fluorescent lifetime.

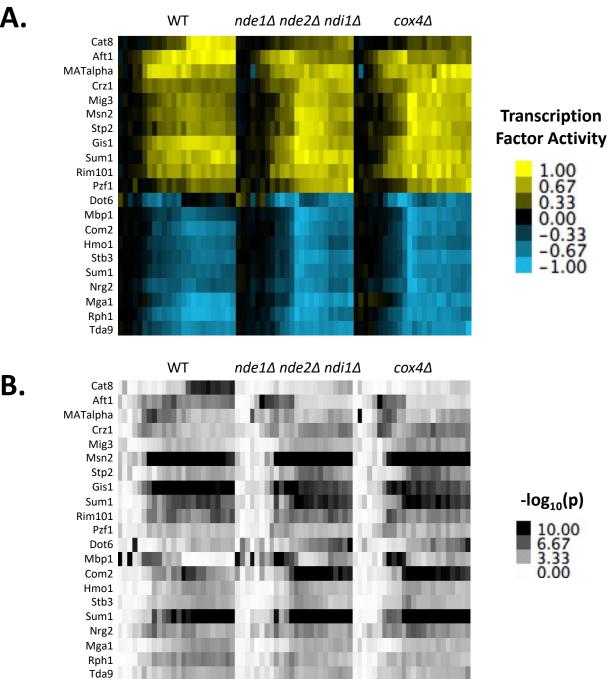
Supplemental Figure 10. Transcriptional regulation in the absence of a single metabolic pathway gene.

Supplemental Figure 11. Comparison of RNA-Seq at t=0 for wild type, $nde1\Delta$ $nde2\Delta$ $ndi1\Delta$, and $cox4\Delta$.

Supplemental Figure 12. Confirmation of mitochondrial genome stability in ETC mutants $coq2\Delta$ and $cox4\Delta$.

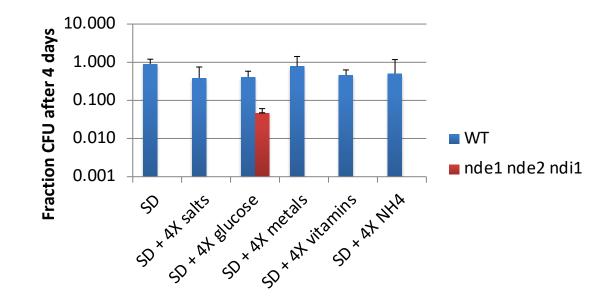

Supplemental Table 1. GO Term search results for clusters in Figure 3D.

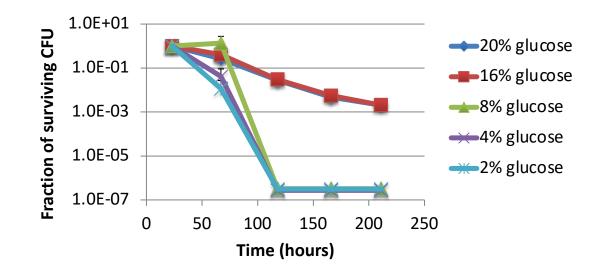
Supplemental Table 2. GO Term searches for clusters in Figure 3E.

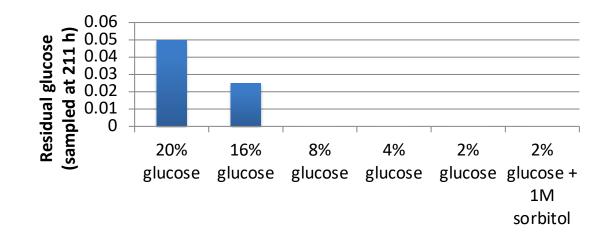

Supplemental Table 3. Measured mutation rate for each ETC mutant in YNB+glucose starvation.

Supplemental Table 4. Observed mutations in ETC suppressor strains.

Supplemental Table 5. Strains used in this study.

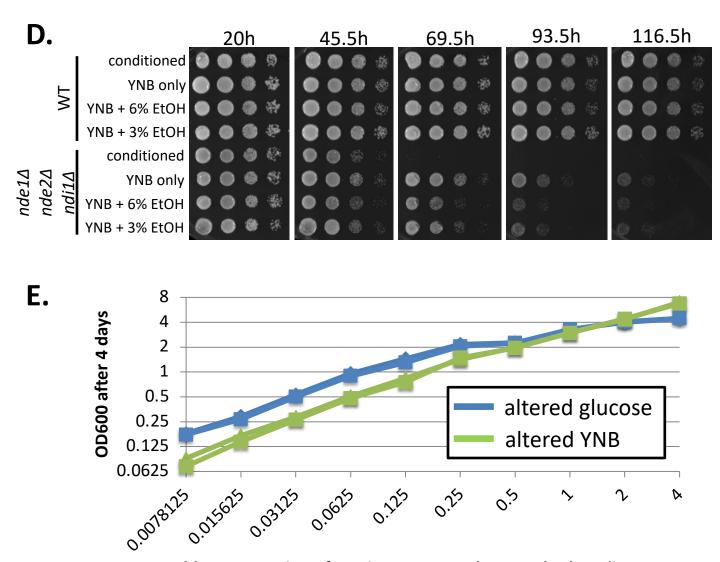



Supplemental Figure 1. Comparison of growth characteristics for final and intermediate ETC mutants. Strains were grown on specified types of growth medium at 30°C for the indicated amount of time before photographing. Before spotting, the initial dilution was normalized to an $OD_{600} = 1.0$ for each strain, and 10-fold serial dilutions were prepared. Shown is a representative example of three biological replicates.



Supplemental Figure 2. Significant transcription factor activity estimations from REDUCE using Fig 3D RNA-Seq data. Transcription factor activities (A) and associated p-values (B). Transcription factor activities were calculated as described in Materials and Methods. Only significant transcription factors were included in this plot (based on having at least 4 time-points with uncorrected p < 0.0001), while the entire matrix of transcription factor activities is available as downloadable data. For each strain, the time-points are identical to those in Figure 3D (0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 38, 46, and 58 hours).

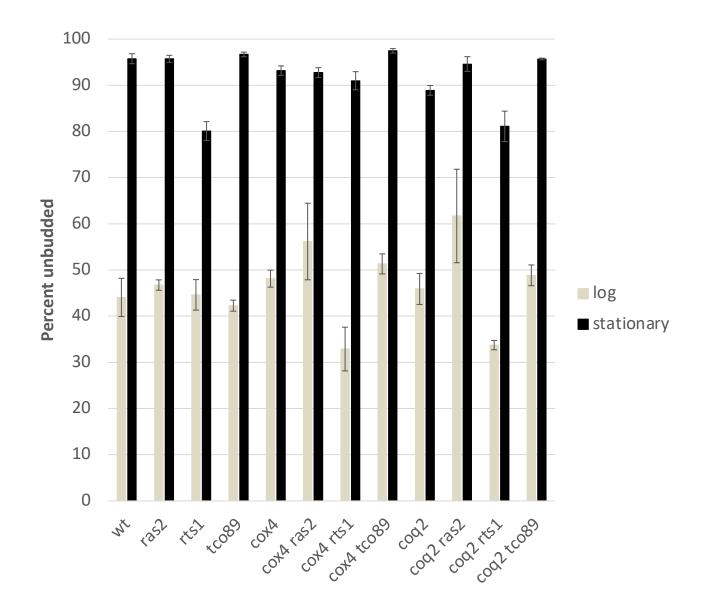
Β.



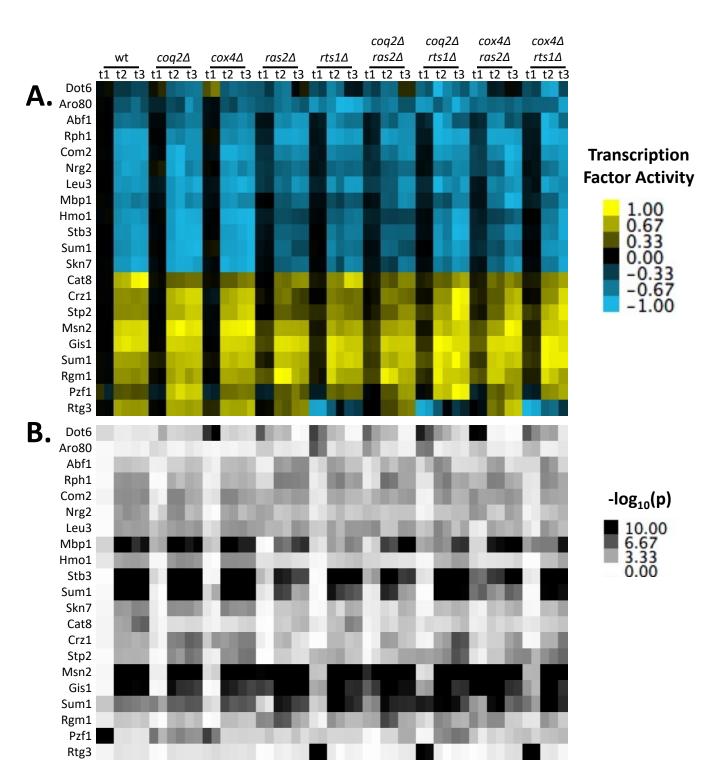
Α.

Β.

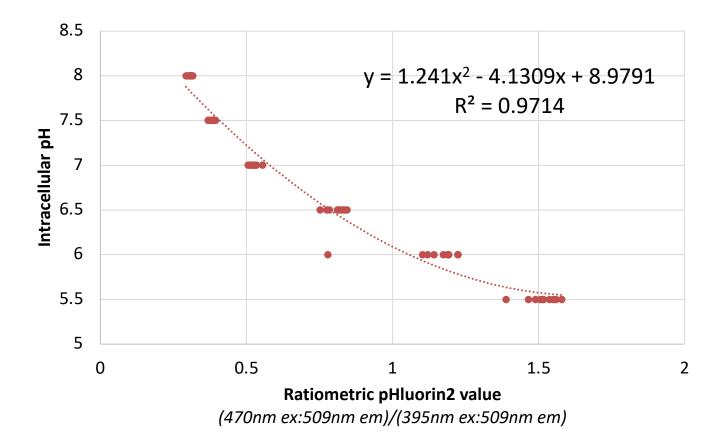
С.

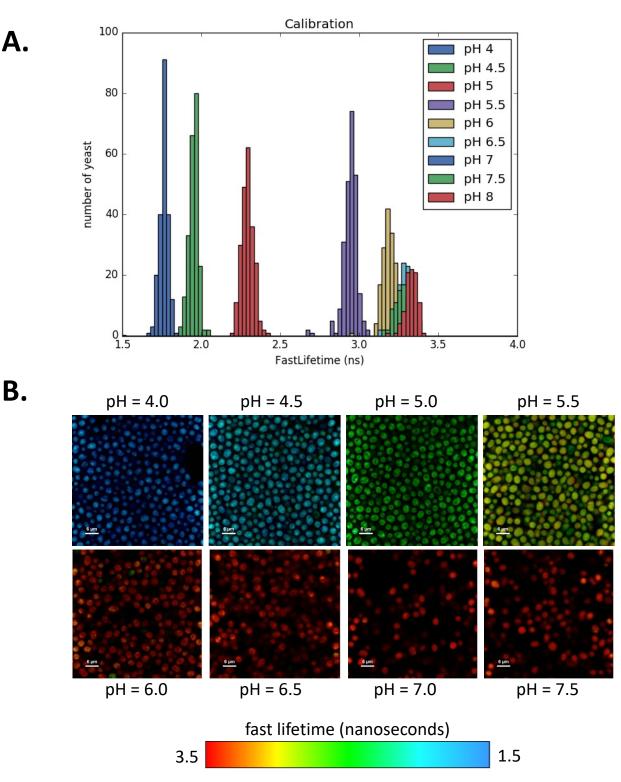

Fold concentration of nutrient compared to standard media

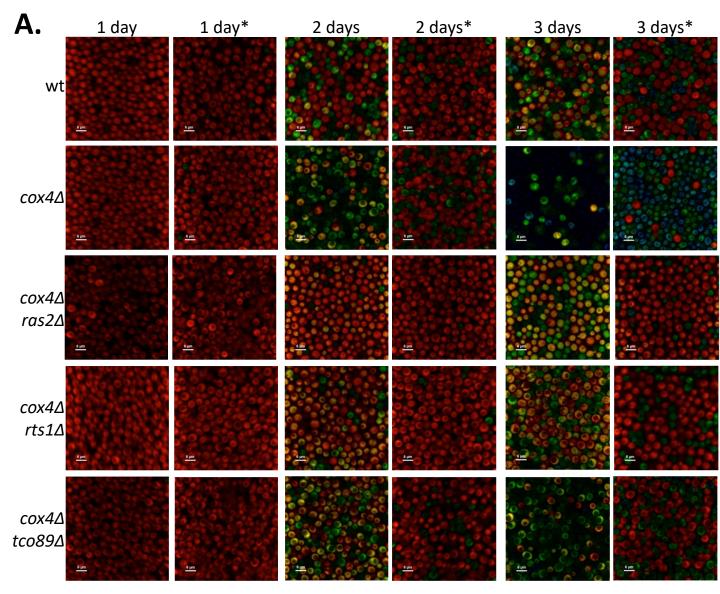
Supplemental Figure 3. Investigation of nutrient limitation in starvation-induced death of ETC mutants in standard YNB+glucose (SD) medium. A. Individual components were added back to YNB+glucose (SD) at 4X normal concentration, and survival was assessed after 4 days at 30°C. B. The *nde1*Δ *nde2*Δ *ndi1*Δ strain was grown in SD with varying (indicated) concentrations of glucose at 30°C and survival was measured at indicated timepoints. C. Residual media glucose from panel B was measured using a glucose testing strip. D. Indicated strains were grown overnight in SD. Cells were then spun-down, washed in 1 mL of sterile water, and resuspended in the indicated solutions (conditioned indicates original growth medium after being sterile filtered). Samples were taken at the indicated timepoints and 10-fold dilutions were spotted onto YPD to be grown at 30°C for 2 days. E. WT cells (cDBY0001) were inoculated into media containing variations in either glucose or YNB concentration, as indicated. Two biological replicates are shown for each. After 4 days of growth at 30°C, OD at 600nm was measured.


					YNB+	
	YPD 2d	YPGal	YPGE	glucose	galactose	glycerol ethanol
	Zu	2d	2d	3d	3d	5d
WT					•••*	
ira1∆				• • • •	• • • •	
ira2∆			🔍 🌒 🚳 👘	• • • 73	• • •	
ras1∆		🔎 🧶 🏶 🏶	🔍 🔍 🌸 💟		• • • *	
ras2∆	• • • •	🌔 🧶 🖗 🔵		• • • *		
srv2∆	• * *				•	
cdc55∆						
rts1∆		• • *	• • • •	• • • *	• • • •	
ppm1∆						
pph21∆		ج ۾ ۾	• • •	• • • •		• • • •
pph22∆					 (a) (b) (c) (c)	
tor1∆						
tco89∆						
mds3∆						• • •
tus1∆						
sch9∆			2			
ccr4∆		🔍 🌒 🛞 🐇		• • • •	🕒 🌒 🆓 🦟	
srb8∆		• • • • •	• • •			
ssn8∆	ی کی ای	• • • •				
pho85∆	•••					
-					A A 369 11.	

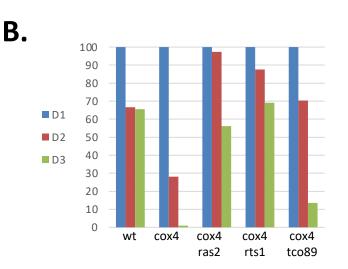
VNR+


Supplemental Figure 4. Comparison of growth characteristics of individual suppressor mutants. Indicated strains were grown overnight in YPD, then washed 3X in sterile miliQ water and normalized to an OD600 of 1.0. 10-fold serial dilutions were performed and strains were spotted onto indicated media and grown at 30°C for the indicated time before photographing.

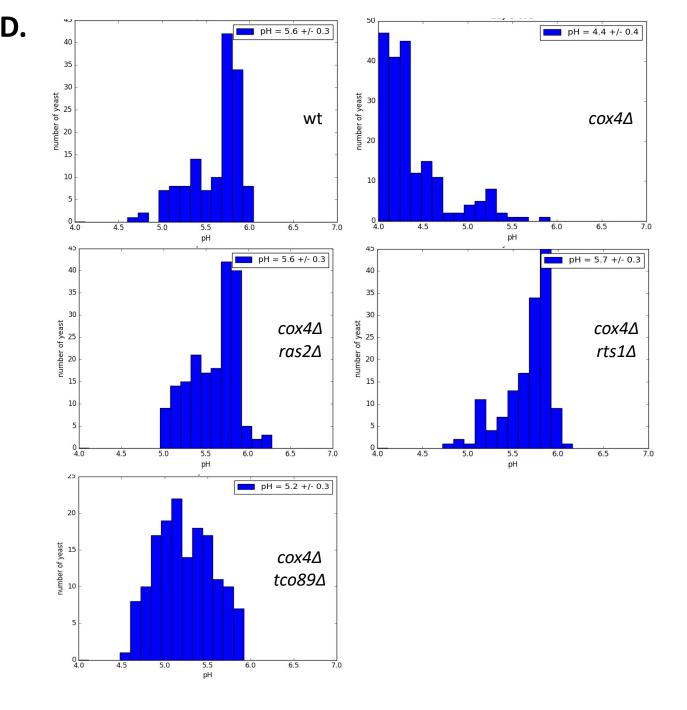

Supplemental Figure 5. Bud index data for ETC mutants and suppressor mutants used for gene expression data in Figure 6. Strains were grown in YNB+glucose as described in Materials and Methods; the stationary phase sample was taken after 3 days in YNB+glucose. Small bud, large bud, and unbudded cells were counted in a hemocytometer (at least 300 cells per biological replicate). Three biological replicates were performed for each strain. Error bars represent the standard deviation.


Supplemental Figure 6. Significant transcription factor activity estimations from REDUCE using Fig 6 RNA-Seq data. Transcription factor activities (A) and associated p-values (B). Transcription factor activities were calculated as described in Materials and Methods. Only significant transcription factors were included in this plot (based on having at least 4 time-points with uncorrected p < 0.0001), while the entire matrix of transcription factor activities is available as downloadable data. For each strain, two biological replicates are shown for each time-point.

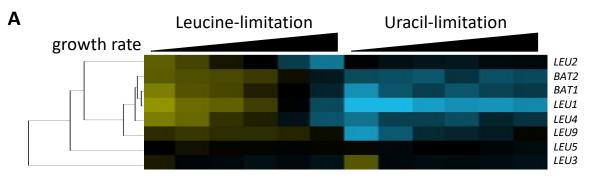
Supplemental Figure 7. Calibration curve for pHluorin2. pHluorin2 calibration was performed as described in Materials and Methods. Briefly, pHluorin2-containing strains from Figure 7 (wild type, $cox4\Delta$, $cox4\Delta$ $ras2\Delta$, $cox4\Delta$ $rts1\Delta$, and $cox4\Delta$ $tco89\Delta$) were grown in YNB+glucose, then permeabilized and resuspended in buffers at pH = 5.5, 6.0, 6.5, 7.0, 7.5, an 8.0. Fluorescence of these samples was measured using a Biotek plate reader. Calibrations were performed for each strain in biological duplicate, and all data was used to plot the calibration curve above. Inset: best fit polynomial curve equation, along with associated R² value.

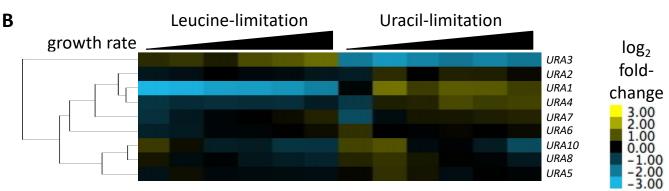


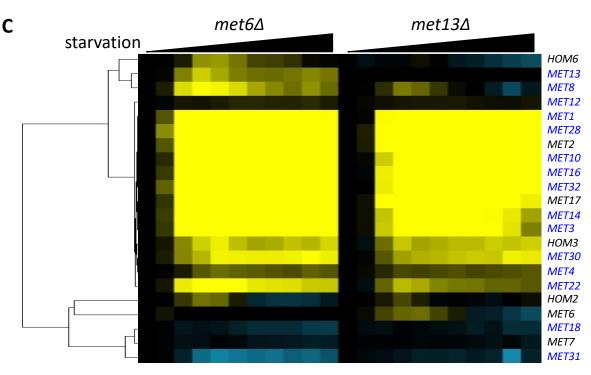
Supplemental Figure 8. Calibration curve for mScarlet. mScarlet calibration experiments were performed using fluorescence lifetime measurements to estimate intracellular pH as described in Materials and Methods. **A.** Plotted are mScarlet fluorescence lifetime measurements of individual cells when buffered at indicated pH values. **B.** Example of cells from each buffered pH (false colored based on fluorescence lifetime as indicated in color bar). Indicated size bar for each image represents 6 μm. Notably this fluorescent molecule would not work well above the pH range of 5.5 to 6.0.


fast lifetime (nanoseconds)

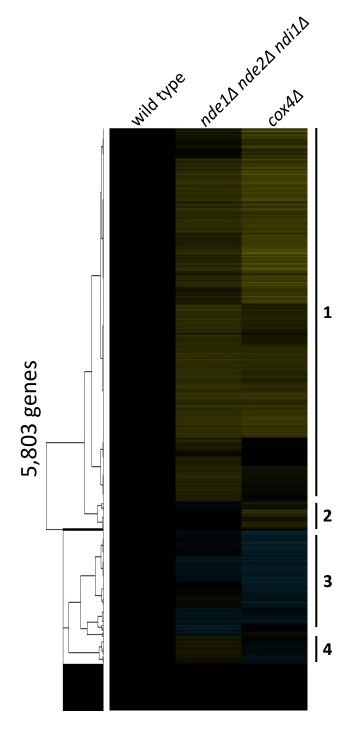
1.5




3.5



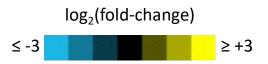
Supplemental Figure 9. ETC suppressors partially restore intracellular pH homeostasis based on mScarlet fluorescent lifetime. A. Indicated strains were grown in YNB+glucose for 1, 2, or 3 days as indicated. False-colored images of cells shown based on fluorescent lifetime (see color bar). Recoverability of cells was assessed by resuspending in fresh medium for 30 minutes (samples indicated with *). B. Percent of samples on each day with intracellular pH > 5.5 (lifetime > 3 ns). C. Samples from each day were recovered as described in panel A, and percent with intracellular pH > 5.5 (lifetime > 3.5 ns) was measured. D. Histograms representing indicated strains with the distribution of individual cellular pH values after 3 days in YNB+glucose.



Supplemental Figure 10. Transcriptional regulation in the absence of a single metabolic pathway gene.

Data for panels A and B were adapted from Brauer *et al.* (Brauer *et al.*, 2008). In panels A and B, growth rates from left to right are 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 per hour. In panels A and B, expression values for each gene (row) were mean-centered, hierarchical clustering was performed using the Pearson correlation with average linkage. Data for panel C were adapted from Petti *et al.* (Petti *et al.*, 2011). In panel C, methionine starvation time-courses includes 0, 10, 30, 60, 90, 120, 150, 180, 210, 240, and 360 minute time-points. Each time-course was zero-normalized and hierarchical clustering was performed using the Pearson correlation with average linkage. Genes indicated in blue are not strictly part of the methionine biosynthesis pathway but are involved with regulation and other metabolic steps in sulfur metabolism.

ENRICHED PROCESSES


Cluster 1 (3,721 genes; 0.71)

response to chemical, transcription by RNAPII, transmembrane transport, mitotic cell cycle, lipid metabolism, etc.


<u>**Cluster 2** (270 genes; 0.85)</u> response to chemical, transcription by RNAPII, ion transport, transmembrane transport, regulation of organelle organization, etc.

Cluster 3 (1,052 genes; 0.44) cytoplasmic translation, rRNA processing, response to chemical, transcription by RNAPII, ribosomal small subunit organization, etc.

<u>**Cluster 4** (280 genes; 0.89)</u> rRNA processing, transcription by RNAPII, mRNA processing, chromatin organization, etc.

Supplemental Figure 11. Comparison of RNA-Seq at t=0 for wild type, *nde1Δ nde2Δ ndi1Δ*, and *cox4Δ*. Samples shown are the t=0 samples from the RNA-Seq data in Figure 3. To examine how ETC mutant gene expression differs from WT, these t=0 samples were normalized to the WT t=0 sample. Indicated clusters were selected (gene number and correlation in parentheses) and GO Slim Mapper (www.yeastgenome.org) was used to identify top 5 enriched processes. The block of ~450 genes at the bottom of the heatmap are genes with raw TPM levels below the flooring limit; therefore all had the same, floored TPM value.

Supplemental Figure 12. Confirmation of mitochondrial genome stability in ETC mutants *coq2* Δ and *cox4* Δ . Genomic DNA was prepared from the indicated strains, and PCR was used to assess the presence/absence of three genes encoded in the yeast mitochondrial genome (*Q0010*, *OLI1*, and *COX3*). The following oligonucleotide pairs were used for each gene: Q0010 FOR (5' – CTATTCTATTGTGGGGGGTCCCAATTAT – 3'), Q0010 REV (5' – CGAAACCGGGACCTCGGAGACG – 3'), OLI1 FOR (5' – GCAATTAGTATTAGCAGCTAAAT – 3'), OLI1 REV (5' – CACCGAATAATAATAAGAATGAAACC – 3'), COX3 FOR (5' – GACACATTTAGAAAGAAGTAGAAC – 3'), COX3 REV (5' – CCTGATAAGGCTTTATTCTATTACC – 3').

_	CLUSTER				CORRECTED
CLUSTER	CORRELATION	ONTOLOGY ASPECT	TERM	FDR	P-VALUE
1	0.52	PROCESS	cellular macromolecule metabolic process	0.00%	6.00E-06
1	0.52	PROCESS	regulation of cellular process	0.00%	3.97E-05
I	0.52	PROCESS	cellular protein modification process	0.00%	4.82E-05
I	0.52	PROCESS	protein modification process	0.00%	4.82E-05
I	0.52	PROCESS	biological regulation	0.00%	4.90E-05
	0.52	PROCESS	regulation of biological process	0.00%	0.00048609
1	0.52	PROCESS PROCESS	macromolecule modification cellular component assembly	0.00%	0.00051589 0.00078518
	0.52	PROCESS	mannosylation	0.00%	0.00085415
	0.52	PROCESS	protein-DNA complex subunit organization	0.00%	0.00087692
1	0.52	PROCESS	regulation of cellular metabolic process	0.00%	0.00167062
I	0.52	PROCESS	nucleosome positioning	0.00%	0.00167895
1	0.52	PROCESS	regulation of cellular component organization	0.00%	0.00182985
1	0.52	PROCESS	regulation of nucleobase-containing compound metabolic process	0.00%	0.00183969
I	0.52	PROCESS	glycosylation	0.00%	0.00215404
I	0.52	PROCESS	DNA conformation change	0.00%	0.00279288
I.	0.52	PROCESS	regulation of cellular component biogenesis	0.00%	0.0029482
I	0.52	PROCESS	regulation of primary metabolic process	0.00%	0.0036733
1	0.52	PROCESS	actin filament-based process	0.00%	0.00370035
	0.52	PROCESS	macromolecule biosynthetic process	0.00%	0.00430345
1	0.52 0.52	PROCESS PROCESS	chromosome organization	0.00%	0.00456165 0.00493476
1	0.52	PROCESS	macromolecule metabolic process cellular component organization	0.00%	0.00512024
	0.52	PROCESS	actin cytoskeleton organization	0.00%	0.00527353
i i	0.52	PROCESS	regulation of biosynthetic process	0.00%	0.00629926
I	0.52	PROCESS	lipid metabolic process	0.00%	0.006306
l.	0.52	PROCESS	lipid biosynthetic process	0.00%	0.0068279
	0.52	PROCESS	regulation of organelle organization	0.00%	0.00712312
1	0.52	PROCESS	regulation of metabolic process	0.00%	0.00801231
I	0.52	PROCESS	regulation of nitrogen compound metabolic process	0.00%	0.00804745
	0.52	PROCESS	regulation of cellular biosynthetic process	0.00%	0.0085674
	0.52 0.52	PROCESS FUNCTION	glycoprotein metabolic process binding	0.00%	0.00945538 1.37E-05
1	0.52	FUNCTION	mannosyltransferase activity	0.00%	9.46E-05
	0.52	FUNCTION	protein binding	0.00%	0.00078075
l I	0.52	FUNCTION	hydrolase activity	0.00%	0.00453681
I	0.52	FUNCTION	catalytic activity	0.00%	0.00772466
I	0.52	COMPONENT	endomembrane system	0.00%	1.53E-08
	0.52	COMPONENT	cell cortex	0.00%	7.28E-08
	0.52	COMPONENT	cytoplasmic region	0.00%	7.28E-08
1	0.52	COMPONENT COMPONENT	cell cortex part intracellular membrane-bounded organelle	0.00%	3.14E-07 3.28E-07
	0.52	COMPONENT	membrane-bounded organelle	0.00%	4.64E-07
I	0.52	COMPONENT	intracellular	0.00%	1.93E-06
I	0.52	COMPONENT	intracellular part	0.00%	1.93E-06
I	0.52	COMPONENT	cortical cytoskeleton	0.00%	2.71E-06
	0.52	COMPONENT	organelle	0.00%	6.11E-06
	0.52 0.52	COMPONENT COMPONENT	intracellular organelle cortical actin cytoskeleton	0.00%	9.35E-06 1.65E-05
1	0.52	COMPONENT	actin cytoskeleton	0.00%	6.97E-05
i	0.52	COMPONENT	cell part	0.00%	7.90E-05
1	0.52	COMPONENT	cell	0.00%	8.67E-05
I	0.52	COMPONENT	actin cortical patch	0.00%	0.00011801
I	0.52	COMPONENT	endocytic patch	0.00%	0.00017616
	0.52	COMPONENT	endoplasmic reticulum	0.00%	0.00028527
	0.52 0.52	COMPONENT COMPONENT	cytoskeleton endoplasmic reticulum part	0.00%	0.00030208 0.00049319
	0.52	COMPONENT	site of polarized growth	0.00%	0.00058408
·	0.52	COMPONENT	Golgi apparatus	0.00%	0.00083962
I	0.52	COMPONENT	protein complex	0.00%	0.00160961
I	0.52	COMPONENT	cytoskeletal part	0.00%	0.00242245
	0.52	COMPONENT	organelle subcompartment	0.00%	0.00685782
	0.52	COMPONENT	intracellular organelle part	0.00%	0.00822244
	0.52	COMPONENT	organelle part	0.00%	0.00906805
11	0.59	PROCESS	no significant GO terms (threshold: p < 0.01)	n/a	n/a
Ш	0.59	FUNCTION	no significant GO terms (threshold: p < 0.01)	n/a	n/a
П	0.59	COMPONENT	no significant GO terms (threshold: p < 0.01)	n/a	n/a
III	0.71	PROCESS	no significant GO terms (threshold: p < 0.01)	n/a	n/a
ш	0.71	FUNCTION	no significant GO terms (threshold: p < 0.01)	n/a	n/a
	0.71	COMPONENT	chromosomal region	2.00%	0.00381208
IV	0.55	PROCESS	proteolysis	0.00%	0.00017452
IV	0.55	PROCESS	endocytosis	0.00%	0.00389046
IV	0.55	PROCESS	ubiquitin-dependent protein catabolic process	0.00%	0.00713191
IV	0.55	FUNCTION	signal transducer activity	0.00%	0.00322875
IV	0.55	FUNCTION	catalytic activity, acting on a protein	0.00%	0.00411976
IV	0.55	COMPONENT	membrane	0.00%	0.00282463
IV	0.55	COMPONENT	proteasome regulatory particle	0.00%	0.00283027
IV	0.55	COMPONENT	proteasome accessory complex	0.00%	0.00283027
V	0.52	PROCESS	no significant GO terms (threshold: p < 0.01)	n/a	n/a
V	0.52	FUNCTION	no significant GO terms (threshold: p < 0.01)	n/a	n/a
V	0.52	COMPONENT	no significant GO terms (threshold: p < 0.01)	n/a	n/a

Supplemental Table 1. GO Term search results for clusters in Figure 3D. GO term searches were performed on 11.26.2019 using the search tool incorporated into the Saccharomyces Genome Database (www.yeastgenome.org). A filter was applied to only include results with a P-value < 0.01. The background gene set for this search included only the 5,803 genes assessed in the accompanying RNA-Seq.

CLUSTER	CLUSTER CORRELATION	ONTOLOGY ASPECT	TERM	FDR	CORRECTED P-VALUE
А	0.78	PROCESS	mitochondrion organization	12.00%	0.00542053
А	0.78	FUNCTION	no significant GO terms (threshold: p < 0.01)	n/a	n/a
А	0.78	COMPONENT	no significant GO terms (threshold: p < 0.01)	n/a	n/a
В	0.46	PROCESS	mitochondrial translation	0.00%	1.52E-08
В	0.46	PROCESS	mitochondrial gene expression	0.00%	7.92E-08
В	0.46	PROCESS	protein metabolic process	2.67%	0.00845372
В	0.46	FUNCTION	structural constituent of ribosome	0.00%	1.34E-06
В	0.46	FUNCTION	structural molecule activity	0.00%	8.58E-06
В	0.46	COMPONENT	organellar ribosome	0.00%	1.81E-10
В	0.46	COMPONENT	mitochondrial ribosome	0.00%	1.81E-10
В	0.46	COMPONENT	mitochondrial matrix	0.00%	7.25E-09
В	0.46	COMPONENT	ribosomal subunit	0.00%	3.32E-06
В	0.46	COMPONENT	ribosome	0.00%	7.95E-06
В	0.46	COMPONENT	organellar small ribosomal subunit	0.00%	3.39E-05
В	0.46	COMPONENT	mitochondrial small ribosomal subunit	0.00%	3.39E-05
В	0.46	COMPONENT	mitochondrial part	0.00%	7.90E-05
В	0.46	COMPONENT	organellar large ribosomal subunit	0.00%	0.00012441
В	0.46	COMPONENT	mitochondrial large ribosomal subunit	0.00%	0.00012441
В	0.46	COMPONENT	mitochondrion	0.00%	0.00013571
В	0.46	COMPONENT	small ribosomal subunit	0.17%	0.00507698
С	0.57	PROCESS	organellar ribosome	0.00%	1.81E-10
С	0.57	PROCESS	mitochondrial ribosome	0.00%	1.81E-10
С	0.57	PROCESS	mitochondrial matrix	0.00%	7.25E-09
С	0.57	PROCESS	ribosomal subunit	0.00%	3.32E-06
С	0.57	PROCESS	ribosome	0.00%	7.95E-06
С	0.57	PROCESS	organellar small ribosomal subunit	0.00%	3.39E-05
С	0.57	PROCESS	mitochondrial small ribosomal subunit	0.00%	3.39E-05
C	0.57	PROCESS	mitochondrial part	0.00%	7.90E-05
C	0.57	PROCESS	organellar large ribosomal subunit	0.00%	0.00012441
C	0.57	PROCESS	mitochondrial large ribosomal subunit	0.00%	0.00012441
C	0.57	PROCESS	mitochondrion	0.00%	0.00013571
C	0.57	PROCESS	small ribosomal subunit	0.17%	0.00507698
C	0.57	FUNCTION	oxidoreductase activity	2.00%	0.00381601
C C	0.57	COMPONENT	mitochondrion	0.00%	1.82E-09
C	0.57 0.57	COMPONENT COMPONENT	mitochondrial part	0.00% 0.00%	1.24E-08 5.85E-07
C			cytoplasm		
C C	0.57 0.57	COMPONENT COMPONENT	cytoplasmic part mitochondrial inner membrane	0.00% 0.00%	4.94E-06 5.29E-05
c	0.57	COMPONENT	mitochondrial envelope	0.00%	7.17E-05
C	0.57	COMPONENT	intracellular organelle	0.00%	7.17E-05 8.14E-05
C C	0.57	COMPONENT	organelle	0.00%	8.33E-05
C	0.57	COMPONENT	organelle inner membrane	0.00%	9.50E-05
c	0.57	COMPONENT	mitochondrial membrane	0.00%	0.00045897
c	0.57	COMPONENT	intracellular	0.00%	0.00090536
C	0.57	COMPONENT	intracellular part	0.00%	0.00090536
C	0.57	COMPONENT	organelle envelope	0.00%	0.00365059
C	0.57	COMPONENT	envelope	0.00%	0.00365059
C	0.57	COMPONENT	mitochondrial matrix	0.00%	0.00381188
C	0.57	COMPONENT	membrane-bounded organelle	0.00%	0.00389896
C	0.57	COMPONENT	organelle membrane	0.00%	0.005496
C	0.57	COMPONENT	cell part	0.00%	0.00566276
C	0.57	COMPONENT	cell	0.00%	0.00572536
C	0.57	COMPONENT	intracellular membrane-bounded organelle	0.20%	0.00709674

Supplemental Table 2. GO Term search results for clusters in Figure 3E. GO term searches were performed on 11.26.2019 using the search tool incorporated into the Saccharomyces Genome Database (www.yeastgenome.org). A filter was applied to only include results with a P-value < 0.01. The background gene set for this search included the entire set of genes available in SGD (7,166 genes).

Strain	Cultures with no suppressors	Number of generations	Mutation rate (mutations per cell division)
nde1∆ nde2∆ ndi1∆	64/72	1.38E+07	8.5536E-09
coq2∆	34/72	1.36E+07	5.5308E-08
rip1∆	42/72	1.42E+07	3.788E-08
ςγς1Δ ςγς7Δ	45/72	1.43E+07	3.2796E-08
cox4∆	15/72	1.38E+07	1.1392E-07
atp1∆	21/64	1.56E+07	7.164E-08

Supplemental Table 3. Measured mutation rate for each ETC mutant in YNB+glucose starvation. A fluctuation assay was performed as described by *Lang et al.* (Lang, 2018). Mutation rates were calculated using the P₀ method ($u = -ln(P_0)/N$; u = mutations per genome per generation, P₀ = probability that a mutation does not occur in the entire culture, N = number of generations that have occurred). For comparison, mutation to 5-FOA resistance is 5.43 x 10⁻⁸ mutations per genome per generation, and mutation to canavanine resistance is 1.52 x 10⁻⁷ mutations per genome per generation (Lang and Murray, 2008).

Gene	Essential	Observed Mutations	Confirmed
RAS2	no	D112Y ^A [1], Q295ns [1], I107L [1], V14L [2], D173fs [2], N221fs ^B [2], T42I [2], ΔM145-Q156 [2], M79I [3], D112V [3], M1I ^C [3], ΔT31-E44 [3], S291fs [3], R48G [4], Y178ns [4], E161fs [4], N221fs [4], ΔK23-V120 [4], G67R [4], A66V [5], ΔA157- S188 [5], ΔE83-E174 [5], Q253ns [5], E70ns [6], E76Q [6], T42K [6]	ves
		A679D [1], Q1509ns [1], F711C [2], Q936H [2], F771S [2], R681H [2], L1983S [2], K959E [2], L1923Q [2], Q1736K [2], R681C [3], E1924K [3], S1676I [3], E1710G [4],	
CYR1	yes	E1659V [4], E1994ns [6], K1738T [6] D76ns [2], ΔA18-T42 [2], Q157ns [2], E240ns [2], ΔA18-T42 [3], W92ns [3], V115fs [3], ΔK160-I236 [4], D203fs [4], ΔA18-T42 [4], ΔN356-G359 [4], Y179ns [4], D342fs [4], R339ns [5], ΔA18-T42 [5], N126fs [5], D262Y [5], ΔL112-N119 [5], ΔT36-A73 [5], D34fs [5], K139fs [6], L78ns [6], F288fs [6], T517fs [6], N406fs [6], S11fs [6],	
CDC55	no	A41fs [6], L209ns [6], ΔL200-end ^ρ [6]	yes
IRA1	yes [∉]	A1657V [6]	no
IRA2	no	S2769ns [#] [1], ΔN2996-S3016 [1], L1851S ^e [2], ΔD2998-S3016 [5], L2530fs [#] [6]	no
CDC25	yes	T1415I [1], E1540K [2], V1384F′ [2], G1460C [2], ΔL624-S672′ [2], P1306R [3], ΔI855-D896′ [4], P1306L [5], E1328K [6], T1415K [6], Promoter SNP ^K [6]	n.t.
RAS1	no	D126N [3], A25P [5], D126N [6]	no
TPD3	no⁴	ΔQ86-E89 [5], G431ns [6]	n.t.
RTS1	no	ΔH492-L503' [2]	yes
SRV2	no	M8I [5]	yes
TUS1	no	Y954H [6]	yes
MDS3	no	E1023fs [6]	yes
тсо89	no	ΔΕ221-D251 [6]	yes
PHO85	no	ΔF158-A176′	yes
SRB8	no	K818ns [6]	yes
TIR1	no	ΔS144-S150 [6]	n.t.
PMA1	yes	P536T [5]	n.t.
GCS1	no	R130H [2]	n.t.
CMD1	yes	Promoter SNP ^M [2]	n.t.
CCR4	no	I176-Q191 [5]	yes
CDC39	yes	S1903 [3]	n.t.
MRP51	no	A138V [3]	n.t.
SSN8	no	G3fs [4]	yes
SST2	no	T268T [4]	n.t.
BUB3	no	D323N [4]	n.t.

Supplemental Table 4. Observed mutations in ETC suppressor strains.

(legend on following page)

Supplemental Table 4. Observed mutations in ETC suppressor strains. These are mutations we detected with high confidence. A subset was tested based on multiple mutations in the same gene or multiple mutations in the same/similar pathway. In the 'Essential' column, we note whether this gene has been annotated as essential in SGD. In the 'Confirmed' column, 'yes' indicates that deletion of this gene recapitulated the suppression phenotype, 'no' indicates that the deletion of this gene did not recapitulate the suppression phenotype, and n.t. indicates that this gene was not further tested for suppression activity. After each listed mutation, the number in brackets indicates the parent strain (1: $nde1\Delta$ $nde2\Delta$ $ndi1\Delta$, 2: $coq2\Delta$, 3: $rip1\Delta$, 4: $cyc1\Delta$ $cyc7\Delta$, 5: $cox4\Delta$, and 6: $atp1\Delta$). For each allele, 'ns' indicates a nonsense allele (stop codon insertion), 'fs' indicates a frameshift allele, and Δ indicates a gene deletion between the listed amino acids (identified in-frame deletions are noted). Precise nucleotide changes are available upon request.

Footnotes:

A: in addition to *ira2*-S2769ns B: complex mutation event (G291D, N221fs, N223Y) C: next ATG is out of frame (therefore this results in a frameshift) D: deletion extends beyond the end of the gene E: this gene appeared to be non-essential in our genetic background F: in addition to *ras2*-D112Y G: in addition to *cdc25*-V1384F H: in addition to *SNP* in *CDC25* promoter at -51 I: in addition to *ira2*-L1851S J: appears to be an in-frame deletion K: SNP in promoter at -51, in addition to *ira2*-L2530fs L: this gene appeared to be essential in our genetic background, and therefore wasn't tested further

M: SNP in promoter at -51 (T -> C)

STRAIN DESIGNATION	NAME IN FIGURES	GENOTYPE	SHOWN IN FIGURE	REF
			1, 2, 3, 4, 7, S1, S2, S3, S4, S7,	
cDBY0001	wт	S288C/FY derivative. MATa prototroph. HAP1+	S8, SF1, SF2, SF3, SF4, SF7, SF8	and Methods
cDBY0002	WT	S288C/FY derivative. MAT α prototroph. <i>HAP1</i> ⁺	5	See Materials and Methods
cDBY0083		MATa HAP1+ ndi10::kanMX nde10::hphMX nde20::bleMX		This study
cDBY0114		MATa HAP1+ sdh1∆::kanMX yjl045w∆::hphMX		This study
cDBY0037		MATa HAP1+ cog20::kanMX		This study
cDBY0041		MATa HAP1+ rip10::kanMX		This study
cDBY0073		MAT a HAP1 ⁺ cyc1∆::kanMX cyc7∆::hphMX		This study
			1, 2, 3, 4, 7, SF1, SF4, SF7,	
cDBY0045		MAT a HAP1 ⁺ cox4Δ::kanMX		This study
cDBY0065		MAT a HAP1 ⁺ atp1Δ::kanMX		This study
cDBY0595		MATa HAP1 ⁺ coq2Δ::kanMX ira1Δ::natAC		This study
cDBY0603		MAT a HAP1+ coq2Δ::kanMX ira2Δ::natAC		This study
cDBY0610		MATa HAP1+ coq2\Delta::kanMX ras1A::natAC		This study
cDBY0611		MATα HAP1 ⁺ coq2Δ::kanMX ras2Δ::natAC		This study
cDBY0618		MATa HAP1+ coq2Δ::kanMX srv2Δ::natAC		This study
PGY365		MATa HAP1+ coq2\Delta::kanMX cdc55A::natAC		This study
cDBY0612		MATα HAP1 ⁺ coq2Δ::kanMX rts1Δ::natAC		This study
cDBY0608		MAT a HAP1+ coq2Δ::kanMX ppm1Δ::natAC		This study
cDBY0607		MATα HAP1+ coq2Δ::kanMX pph21Δ::natAC		This study
cDBY0647		MAT a HAP1+ coq2Δ::kanMX pph22Δ::natAC		This study
cDBY0624		MATa HAP1+ coq2Δ::kanMX tor1Δ::natAC	4	This study
cDBY0622				This study
cDBY0598		MAT a HAP1+ coq2Δ::kanMX mds3Δ::natAC	4	This study
cDBY0626		MATa HAP1+ coq2Δ::kanMX tus1Δ::natAC		This study
cDBY0616	coq2∆ sch9∆	MATa HAP1 ⁺ coq2Δ::kanMX sch9Δ::natAC		This study
cDBY0592		MATa HAP1 ⁺ coq2\Delta::kanMX ccr4D::natAC		This study
cDBY0614	$coq2\Delta$ srb8 Δ	MAT a HAP1+ coq2Δ::kanMX srb8Δ::natAC	4	This study
cDBY0620		MATa HAP1+ coq2\Delta::kanMX ssn8A::natAC	4	This study
cDBY0605		MAT a HAP1 ⁺ coq2Δ::kanMX pho85Δ::natAC	4	This study
cDBY0561		MATa HAP1+ cox4Δ::kanMX ira1Δ::natAC		This study
cDBY0563		MATa HAP1+ cox4Δ::kanMX ira2Δ::natAC	4	This study
cDBY0573		MATa HAP1+ cox4∆::kanMX ras1∆::natAC		This study
cDBY0575		MATa HAP1+ cox4∆::kanMX ras2∆::natAC	4, 7, SF4, SF7	This study
cDBY0583		MATa HAP1+ cox4Δ::kanMX srv2Δ::natAC	4	This study
PGY310		MATa HAP1+ cox4Δ::kanMX cdc55Δ::natAC		This study
cDBY0577		MATa HAP1+ cox4Δ::kanMX rts1Δ::natAC	4, 7, SF4, SF7	This study
cDBY0571		MAT a HAP1 ⁺ cox4Δ::kanMX ppm1Δ::natAC		This study
cDBY0567		MATa HAP1+ cox40::kanMX pph210::natAC	4	This study
cDBY0569		MATa HAP1+ cox4Δ::kanMX pph22Δ::natAC		This study
cDBY0588		MATa HAP1+ cox4A::kanMX tor1A::natAC	4	This study
cDBY0586		MATa HAP1⁺ cox4∆::kanMX tco89∆::natAC		This study
PGY360		MATa HAP1⁺ cox4∆::kanMX mds3∆::natAC	4	This study
cDBY0590		MATa HAP1+ cox4∆::kanMX tus1∆::natAC		This study
cDBY0579	cox4∆ sch9∆	MAT a HAP1 ⁺ cox4Δ::kanMX sch9Δ::natAC	4	This study

Supplemental Table 5. Strains used in this study.

STRAIN DESIGNATION	NAME IN FIGURES	GENOTYPE	SHOWN IN FIGURE	REF
cDBY0559	cox4∆ ccr4∆	MAT a HAP1 ⁺ cox4Δ::kanMX ccr4Δ::natAC	4	This study
cDBY0533	$\cos 4\Delta \ srb 8\Delta$	MATa HAP1 cox40::kanMX srb80::natAC	4	This study
cDBY0584	$\cos 4\Delta \sin 8\Delta$	MATa HAP1* cox4\Delta::kanMX ssn8\Delta::natAC	4	This study
cDB10584	cox4Δ ssn8Δ	MATa HAP1 cox40.:kanMX pho850::natAC	4	This study
00010303	C0X42 ph0852		4	See Materials
DBY12031	leu2∆	MATα HAP1 ⁺ leu2Δ0	5	and Methods
cDBY0426	ras2∆	MATα <i>HAP1⁺ ras</i> 2∆::kanMX <i>leu</i> 2∆0	5	This study
cDBY0432	srv2∆	MATα HAP1 ⁺ srv2Δ::kanMX leu2Δ0	5	This study
cDBY0417	mds3∆	MATα HAP1+ mds3Δ::kanMX leu2Δ0	5	This study
cDBY0437	tor1∆	MATα <i>HAP1⁺ tor1</i> Δ::kanMX <i>leu2</i> Δ0	5	This study
cDBY0428	rts1∆	MATα <i>HAP1⁺ rts1</i> Δ::kanMX <i>leu2</i> Δ0	5	This study
cDBY0423	ppm1∆	MATα <i>HAP1+ ppm1</i> Δ::kanMX <i>leu2</i> Δ0	5	This study
cDBY0415	ccr4∆	MATα <i>HAP1⁺ ccr4</i> Δ::kanMX <i>leu2</i> Δ0	5	This study
cDBY0430	srb8∆	MATα <i>HAP1⁺ srb8</i> ∆::kanMX <i>leu2</i> ∆0	5	This study
cDBY0434	ssn8∆	MATα HAP1+ ssn8Δ::kanMX leu2Δ0	5	This study
cDBY0419	pho85∆	MATα <i>HAP1⁺ pho85</i> ∆::kanMX <i>leu2</i> Δ0	5	This study
cDBY0081	ndi1∆	MAT a HAP1+ ndi1Δ::kanMX	SF1	This study
cDBY0051	nde1∆	MAT a <i>HAP1</i> ⁺ <i>nde1</i> ∆::hphMX	SF1	This study
cDBY0061	nde2∆	MAT a HAP1⁺ nde2∆::bleMX	SF1	This study
cDBY0077	nde1∆ nde2∆	MAT a HAP1 ⁺ nde1Δ::hphMX nde2Δ::bleMX	SF1	This study
cDBY0033	sdh1∆	MAT a HAP1+ sdh1Δ::kanMX	SF1	This study
cDBY0107	yjl045w∆	MAT a HAP1⁺ yjl045w∆::hphMX	SF1	This study
cDBY0049	cyc1∆	MAT a HAP1 ⁺ cyc1Δ::kanMX	SF1	This study
cDBY0057	cyc7∆	MAT a HAP1 ⁺ cyc7Δ::hphMX	SF1	This study
cDBY0389	ira1∆	MAT a HAP1+ ira1∆::natAC	SF3	This study
cDBY0391	ira2∆	MATα <i>HAP1+ ira2</i> Δ::natAC	SF3	This study
cDBY0400	ras1∆	MAT a HAP1+ ras1∆::natAC	SF3	This study
cDBY0402	ras2∆	MATα HAP1+ ras2Δ::natAC	SF3, SF4	This study
cDBY0408	srv2∆	MAT a HAP1* srv2Δ::natAC	SF3	This study
cDBY0387	cdc55∆	MATa HAP1 ⁺ cdc555::natAC	SF3	This study
cDBY0403	rts1∆	MAT a HAP1 ⁺ rts1∆::natAC	SF3, SF4	This study
cDBY0398	ppm1∆	MAT a HAP1* ppm1Δ::natAC	SF3	This study
cDBY0395	pph21∆	MAT a HAP1 ⁺ pph21Δ::natAC	SF3	This study
cDBY0397	pph22∆	MATα HAP1+ pph22Δ::natAC	SF3	This study
cDBY0412	tor1∆	MATα HAP1+ tor1Δ::natAC	SF3	This study
cDBY0410	tco89∆	MAT a HAP1* tco89Δ::natAC	SF3, SF4	This study
cDBY0392	mds3∆	MAT a HAP1⁺ mds3∆::natAC	SF3	This study
cDBY0413	tus1∆	MAT a HAP1+ tus1Δ::natAC	SF3	This study
cDBY0405	sch9∆	MAT a HAP1+ sch9∆::natAC	SF3	This study
cDBY0386	ccr4∆	MAT a <i>HAP1⁺ ccr4</i> ∆::natAC	SF3	This study
cDBY0407	srb8∆	MATα HAP1+ srb8Δ::natAC	SF3	This study
cDBY0409	ssn8∆	MATα HAP1 ⁺ ssn8Δ::natAC	SF3	This study
cDBY0393	pho85∆	MAT a HAP1⁺ pho85∆::nətAC	SF3	This study
cDBY0653	WT (pHluorin)	MAT a HAP1+ can1Δ::TDH3pr-ypHluorin2	SF3	This study

Supplemental Table 5. Strains used in this study.