
Probing Pedomorphy and Prolonged
Lifespan in Naked Mole-Rats and Dwarf
Mice

Pedomorphy, maintenance of juvenile traits throughout life, is most pro-

nounced in extraordinarily long-lived naked mole-rats. Many of these traits

(e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are

shared with spontaneously mutated, long-lived dwarf mice. Although some

youthful traits likely evolved as adaptations to subterranean habitats (e.g.,

thermolability), the nature of these intrinsic pedomorphic features may also

contribute to their prolonged youthfulness, longevity, and healthspan.
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Introduction

Species lifespan varies by more than four orders
of magnitude across the animal kingdom and
100-fold among mammals (6, 26, 121). This range
dramatically surpasses observed extensions of
longevity by genetic or environmental manipula-
tions in any one model organism (109, 131, 132).
Maintaining processes critical to early life develop-
ment may be linked to both prolonged lifespan and
prolonged health span. Retention of these early life
traits may confer youthful properties (e.g., sus-
tained proliferative potential), more efficient phys-
iological function, and sustained species fitness.
These juvenile traits may also facilitate better tol-
erance of stressors and foster metabolic plasticity.
Preservation of juvenile traits in adult animals,
termed “pedomorphy,” has been observed
throughout the animal kingdom (e.g., insects,
amphibians, reptiles, and mammals), including
humans (50, 81, 106, 137, 151, 196) and naked
mole-rats (1a, 22, 83, 118, 128, 156, 191), and may
contribute to prolonged longevity. Long lifespans
necessitate a suite of molecular and biochemical
mechanisms to maintain cellular and organ system
homeostasis, thereby delaying the functional de-
clines that typically occur during the aging process.
Pedomorphosis and the mechanisms that regulate
this process may play a pivotal role in protracted
good health and prolonged longevity.

What Is Pedomorphosis?

Developmental processes in multicellular organ-
isms are complex, requiring tight regulation of key
milestones in development and maturity within a

precise timeline. Altered timing or rates of devel-
opmental processes in an organism is called het-
erochrony, an expansive term with multiple
subcategories beyond the scope of this review
(summarized in Table 1). One such category is
pedomorphosis, a type of heterochrony that refers
to the retention of immature traits into adulthood,
such that these traits in mature adults resemble the
juvenile forms of the ancestral species (94). Origi-
nally, this phenomenon was labeled “neoteny,” a
term that has “evolved” multiple, contentious
meanings (Table 1) within the fields of evolution-
ary and developmental biology (for reviews, see
Refs. 81, 170, 187). Neoteny has been used to de-
scribe the general phenomenon of youthful traits
appearing out of context in adult organisms or
multiple sub-categories of the very same phenom-
enon (e.g., decreased rate or delayed timing of
developmental processes). Neoteny has also been
defined as very specific types of developmental
events, like becoming reproductively active while
retaining larval morphology (130). To avoid any
potential confusion associated with multiple defi-
nitions, we will eschew the word “neoteny” alto-
gether and exclusively use “pedomorphy” to refer
to the general phenomenon of maintaining youth-
ful traits into adulthood.

Small changes in developmental processes due
to both genetic and environmental influences can
lead to large changes in phenotype and can impact
survival both in utero and postnatally (212). After
birth, newborn mammals encounter a very differ-
ent environment compared with that in utero and
exhibit a markedly different physiology to that of
fetuses and mature adults. Compared with adults,
both the fetus and the newborn show remarkable
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tolerance to numerous physiological stressors,
including hypoxia, thermoregulatory stressors,
and lack of nutrients (189). These age-dependent
differences may be attributed to juvenile-specific
traits and their concomitant protective develop-
mental phenotypes essential for early life
environment.

The potential origins for development of a pedo-
morphic trait include both genetic and environ-
mental influences (FIGURE 1). Humans have
commonly practiced genetic selection of pedomor-
phic features in dog breeding, creating a variety of
small dog breeds that exhibit sociability, subservi-
ent behavior, longer lives, and other traits often
associated with playful puppies compared with
their adult wolf-like ancestors (59). Beyond Mam-
malia, pedomorphy has been extensively studied
in amphibians (50, 176), where, under non-favor-
able environmental conditions, metamorphosis
can be paused, as observed in the tiger salamander
(182). Genetic mutations altering endocrine func-
tion may similarly slow or stop maturation to the
adult phenotype, as seen in the Mexican axolotl
(Ambystoma mexicanum) (43).

The hypothalamic-pituitary-thyroid axis is the
most widely known endocrine system involved in
species maturation. It alters gene expression net-
works facilitating the onset of metamorphosis in
lower vertebrates. Retention of larval characteris-
tics into the adult stage in the Mexican axolotl
(Ambystoma mexicanum) is attributed to low ac-
tivity of the hypothalamic-pituitary-thyroid axis
and attenuated tissue sensitivity to these hor-
mones (130). Similarly, thyroid hormone is thought
to be the master regulator of cardiomyocyte pro-
liferation in multiple phylogenetic clades, includ-
ing fish and mammals (47, 92).

Progression into adulthood can also be delayed
by perturbation of the insulin/IGF/FOXO axis (15).
Like the tiger salamander, when roundworms
(Caenorhabditis elegans) encounter sub-optimal

conditions that may negatively impact reproduc-
tive success (e.g., reduced nutrient availability),
they remain in a juvenile-like dauer state (111) for
many months, with reduced insulin/IGF signaling.
Thereafter, they resume normal development into
healthy, fertile adults (109, 172). Genetic mutants
that reduce insulin/IGF/FOXO signaling (e.g.,
daf-2) constitutively stimulate dauer formation,
even under optimal conditions (109, 117), and fos-
ter the juvenile traits of enhanced stress resistance,
energy conservation, and increased longevity
(108).

Although there are multiple potential origins for
pedomorphic traits, benefits associated with these
traits may have resulted in their positive selection
in long-lived organisms. These benefits include en-
ergy conservation (by preventing development if
conditions are too harsh to support the adult or-
ganism), metabolic and reproductive plasticity
(e.g., switching between glucose and fructose met-
abolic substrates or retaining the ability to repro-
duce throughout life), and maintenance of
youthful attributes in cells, tissues, and/or organs
(e.g., higher functionality, ability to regenerate, and
stress resistance).

Long-Lived Rodent Models

Here, we evaluate pedomorphic traits of two long-
lived rodents: naked mole-rats and spontaneously
mutated dwarf mice (FIGURE 2). We question
whether these two rodents, one a natural extremo-
philic subterranean-dwelling species (179) and the
other an experimental model of extended longevity
(8), share similar traits and whether these may be
regulated by evolutionarily conserved pathways di-
rectly pertinent to extended longevity.

The Naked Mole-Rat

The naked mole-rat (Heterocephalus glaber; Ro-
dentia, Heterocephalidae; FIGURE 2A) is the

Table 1. The language of heterochrony

Pedomorphosis Mechanisms Peramorphosis Mechanisms

Decreased rate of developmental processes (rate
hypomorphosis, neoteny, deceleration)

Increased rate of developmental processes (rate
hypermorphosis, acceleration)

Decreased duration of developmental events
(time hypomorphosis)

Increased duration of developmental events
(time hypomorphosis)

Timing of developmental events is delayed
relative to that of ancestors (post-displacement,
neoteny)

Timing of developmental events is earlier than
observed in ancestors (pre-displacement)

Heterochrony is the variation in the timing of developmental processes compared with the ancestral form.
Pedomorphosis, or neoteny, is the retention of youthful traits into adulthood. Peramorphosis, or recapitulation,
is the exaggeration of adult characteristics. Both pedomorphy and peramorphy occur via a variety of mecha-
nisms, including genetic alterations and environmental perturbations. For more discussion regarding the
language of heterochrony and associated processes, see Refs. 1, 73a, 81, 170, 187. Note that the term “neoteny”
has been applied to various specific mechanisms of “pedomorphosis,” as well as being generally used to mean
“pedomorphosis.”
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smallest (~40 g) of the �50 known subterranean
rodent species but is the longest-lived, living at
least a decade longer than other species (123).
Strikingly, unlike other mammals, naked mole-rats
maintain a constant risk of dying even at ages
many-fold greater than their allometrically pre-
dicted maximum lifespan and at ages �25-fold
their age at sexual maturity (174). This trait is ob-
served in both the dominant, breeding individuals
and their reproductively suppressed subordinates,
although those that breed, in defiance of the dis-
posable soma theory of aging (58), live longer than
subordinates (174). Rather, as is observed in juve-
niles of other mammalian species, death in this
species is stochastic, with lifetime maintenance of
physiological and biochemical function, as well as
tissue homeostasis (25, 84, 146). Age-associated
chronic diseases, including cancer, neurodegen-
eration, and cardiovascular disease, are extremely
rare (51, 63, 183), with similar incidences in both
young and old individuals.

The naked mole-rat is a prime example of an
organism exhibiting extreme biology. It is one of
only two eusocial mammals, with a similar social
structure to that of termites and bees. Naked mole-
rats live in large colonies of up to ~300 individuals,
with only one dominant breeding female who sup-
presses reproduction, sexual maturation, and sex
steroid hormone levels in her offspring (103). She
mates with 1–3 males. Her offspring are sexually
monomorphic (160) and rarely leave their natal
colony, but rather perform cooperative tasks for
the colony and remain non-reproductive, regard-
less of their age (103). Females show no meno-
pause and can continue to produce young beyond

the age of 33 yr, with the older breeders often
producing larger litters than the newer, less-estab-
lished breeders, although pup survival is com-
monly lower.

Naked mole-rat colonies reside in a maze of
underground burrows; this sealed niche is physio-
logically challenging, with limited options for heat
and gas exchange, the latter resulting in hypoxic
and hypercapnic conditions within the deep nests.
Naked mole-rats also have high metabolic de-
mands associated with tunneling through soil
while blindly foraging for underground plant roots
and tubers, their main source of nutrients and
water (121). These animals exhibit numerous ad-
aptations to their harsh habitat (23), which, never-
theless, provides protection from widely
fluctuating climatic conditions, airborne infectious
agents, and predators, thereby attenuating many
common causes of extrinsic mortality. Evolution-
ary theory suggests that long-lived species would
have evolved in relatively protected habitats where
evolutionary tinkering could amend molecular
pathways that indirectly influence lifespan (101).
Benefits from acquiring this extreme longevity
must outweigh the costs involved in attaining this
trait without compromising species fitness. Not
only should long-lived species exhibit greater re-
sistance to environmental threats they encounter
in their milieu, but they should also have the ca-
pacity to maintain youthful levels of repair and
regenerative mechanisms to facilitate better so-
matic maintenance throughout life (78, 179).

Considerable evidence from postmortem analy-
ses of older animals reveals numerous signs of
tissue regeneration and remodeling; nevertheless,
numerous age-associated pathologies are evident,
including sarcopenia, osteoarthritis, and cataracts,
as well as signs of cardiovascular, renal, and peri-
dontal disease (63). Because naked mole-rats are
typically housed at high ambient temperatures, ne-
crosis rapidly sets in, impeding assessments of
cause of death. Despite extensive necropsies, no
consistent pattern of age-associated causes of
death are evident, and most age-associated com-
mon causes of mortality (e.g., cancer and cardio-
vascular disease) are rarely observed (27, 51, 63).
Rather, like that observed in young animals, naked
mole-rat causes of death appear to be random and
stochastic (174).

The German naturalist Edward Rüpell first pub-
lished a description of naked mole-rats in 1842. He
thought these “sand puppies” were juveniles of a
larger, haired adult mammal (175). This miscon-
ception was based on their newborn-like physical
appearance, notably their small size, absence of an
insulatory pelage, and the fact that their eyes pre-
dominantly remain closed even when the animals
are active (FIGURE 2). Since that first suggestion

FIGURE 1. Emergence of pedomorphic traits
1: each circle color represents an independent trait avail-
able in the ancestral gene pool of any organism; some
of those traits are pedomorphic (indicated by red out-
line), whereas others are not. 2: over time, environmen-
tal pressures (food availability, temperature, pH, toxins,
predation, etc.) select from among available traits for
those that are most fit in an ecophysiological niche. 3: in
this example, among the traits providing high fitness is
one pedomorphic trait. This youthful trait, as an exam-
ple, may be advantageous for providing organisms the
ability to digest an abundant form of sugar that adult
organisms typically cannot digest, such as lactose.
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that these small mammals may retain juvenile
traits into adulthood, there have been many other
reports documenting perinatal or pedomorphic
traits (FIGURE 3) in this species (1a, 22, 83, 105,
118, 128, 154, 156, 192). For instance, naked mole-
rats have disproportionately large heads relative to
their body size; maintain a flexible, unfused man-
dibular symphysis that allows the lower incisor
teeth to move independently (33); and have high
levels of body fat (146). Naked mole-rats lack ear
pinnae, and the males are cryptorchid, lacking de-
scended scrotal sacs. The absence of sexually di-
morphic external genitalia, evidence of sexually
monomorphic traits in male and female subordi-
nates, similar number and arrangement of the mo-
tor neurons innervating the phallus, and the
striated perineal muscles associated with the phal-
lus are more akin to early developmental stages in
utero (158). Additionally, like juveniles of other
species, their vomeronasal organ, essential for
pheromone detection, is an order of magnitude
smaller than observed in similar-sized adult mice
and shows no signs of neuroepithelial postnatal
development and folding. This is possibly indica-
tive of the lack of sexual activity in adult subordi-
nate naked mole-rats, similar to what has been
observed in juveniles from other species (54, 195).

Dwarf Mice

Regardless of the genetic manipulation (i.e., Pit1 or
Prop1 mutations), dwarf mice are a third of the size
of their normal-sized counterparts (FIGURE 2B)
and live about a year longer, a lifespan extension
approximately equivalent to 30 yr in humans (20,
131). Dwarf mice typically have a deficit in growth
hormone (GH) or its receptor (GHR) (GHR knock-
out mice). Although the well-characterized Ames
mouse phenotype is driven by a spontaneous point
mutation in the Prop1 gene that is upstream of
Pit1, Snell dwarf mice exhibit a mutation in Pit1,
resulting in altered anterior pituitary cell-type ex-
pression (8, 125, 197). Both the Ames and the Snell
dwarf mice also lack thyroid-stimulating hormone
and prolactin (Tables 2 and 3), and live up to 68%
and 50% longer than their wild-type siblings, re-
spectively (20, 75). These mice share many charac-
teristics associated with calorically restricted mice
(Table 2), a dietary intervention that also extends
both lifespan and healthspan while modulating
glucose handling and energy metabolism (13).
However, caloric restriction further extends dwarf
mouse longevity, suggesting that the lifespan-ex-
tending mechanisms of these two experimental
manipulations may work through different path-
ways (10).

Dwarf mice, even in old age, retain a juvenile
appearance, with pup-like features including flat-
tened, smaller snouts and high levels of body fat.

They also exhibit impaired reproduction. Like the
naked mole-rat, they maintain cardiac function
during aging, are more active than age-matched,
wild-type conspecifics (21, 79, 131, 169), exhibit
enhanced stress resistance, and have lower inci-
dences of age-associated diseases, including can-
cer (4, 99, 140, 141). Shared attenuated aging
phenotypes between these two models of extended
longevity suggest conserved mechanisms may con-
tribute to maintenance of youthfulness and ex-
treme longevity.

Protracted Growth and
Development and the Hormones
Involved in These Processes

Unlike most other small mammals, particularly
compared with other similar-sized rodents, the
gestation period of naked mole-rats is exception-
ally long [~66 –72 days (102)], and more than three
times longer than mouse gestation [21 days (55)].
Despite large interspecific differences in the
amount of time spent in utero, pup mass at birth is
similar between the species (1–1.8 g/pup). The
number of pups per litter is more variable, with
litter sizes ranging from 1 to 29 for naked mole-rats
and from 2 to 12 for mice (202).

Growth, as determined by Gompertz transfor-
mation, revealed that naked mole-rat pups have
the slowest maximum growth rate (0.207 g/day on
average) compared with other mole-rat species
and mice (147). Although they can become sexually
mature and reproduce at 6 mo, somatic growth
continues for the first 18 mo, suggesting that over-
all growth is considerably slower; naked mole-rats
require more developmental time to mature than
mice. Similarly, the Ames dwarf mouse shows ex-
tended periods of development compared with
wild-type counterparts. Born with the same weight
as wild-type littermates, adult Ames mice weigh
12–15 g, whereas wild-type mice weigh 35– 40 g,
illustrating the somatic actions of GH (12). The
Ames dwarf phenotype only begins to emerge
10 –12 days after birth (193), after which point

FIGURE 2. Naked mole-rats and Ames dwarf mice exhibit multiple pedo-
morphic features
Both naked mole-rats (A) and Ames dwarf mice (mouse on right in B) exhibit multiple
pedomorphic features.
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dwarf pups exhibit significantly slower growth
rates, delayed eye-opening, and an approximately
twofold longer time to reproductive maturity, evi-
dent in both males and females (12).

Many of the differences in dwarf mice are attrib-
uted to pronounced hormone deficiencies associ-
ated with abnormal pituitary gland development,
particularly those linked to growth and thyroid
hormones (19). Similarly, naked mole-rats have
lower levels of both GH and thyroid hormones
relative to other mole-rats and mice (28) that may
contribute to attenuated growth rates and delayed
attainment of adult mass (Table 3). Deficiencies in
these tropic hormones and concomitant postpone-
ment of tissue maturity likely play a pivotal role in
delaying age-associated decline and prolonging
health.

Insulin and IGF

The key hormones for growth and development,
GH, insulin, and IGF-1, are highly conserved com-
ponents of pathways that are known to influence
the lifespan of most animal models (9, 107). Not
only do naked mole-rats have low levels of GH, but
transcriptomic evidence suggests that they also ex-
hibit attenuated levels of insulin and mTOR path-
way components (110), as do dwarf mice (Tables 2
and 3). Together, these features may contribute to
their protracted development and slow growth
rates (147, 149, 156).

Fasting blood glucose, plasma insulin, and IGF-1
(24, 25, 110) are also low in naked mole-rats, as in
dwarf mice (19). Both models of extended longev-
ity show impaired glucose tolerance responses (11,
114), more in keeping with glucose tolerance pro-
files associated with either insulin resistance or
insulin deficiency. Nevertheless, these low levels of

insulin and IGF-1 are associated with delayed ag-
ing in multiple species, including humans, rodents,
and canids (9, 82, 85).

In contrast to IGF-1, both Kim et al. (110) and
Brohus et al. (17) reported that insulin-like growth
factor 2 (IGF-2) transcript levels, which are typi-
cally high in utero, are retained at high levels
throughout life in naked mole-rats, underscoring
how these animals maintain perinatal traits into
adulthood; in certain tissues Igf-2 levels even in-
creased during aging (17, 110).

Thyroid Hormone

Thyroid hormones have also been implicated in
regulation of development, metabolism, and life-
span; many of these actions result from down-
stream modulation of membrane composition, mi-
tochondrial efficiency, and substrate utilization
(96). However, thyroid hormone is also considered
critical for maturation from juvenile to adult in
vertebrates, including frog and axolotl metamor-
phosis, and normal organ development in mam-
mals (138, 203). Thyroid hormone only begins to
rise late in mammalian fetal development, reach-
ing levels 2,000 times that in utero in the first week
of life and declining thereafter to sustained low
levels in adulthood (56, 155). Despite the impor-
tance of this pleiotropic hormone in development
and energy utilization, low levels of thyroid hor-
mone are associated with prolonged longevity in
certain animal models, including naked mole-rats
as well as long-lived centenarian humans (5, 8, 16,
28). Naked mole-rats have very low circulating lev-
els of thyroid hormone that increase slightly when
animals are housed in the cold, although levels
never come close to those of mice housed under
standard laboratory conditions (29). Similarly,
dwarf mice are hypothyroid relative to wild-type
conspecifics (Table 3).

Sexual Maturity and Reproductive
Hormones

Social status affects many aspects of health and
reproduction in mammals, including humans
(214), by influencing the hypothalamic-pituitary-
adrenal and hypothalamic-pituitary-gonadal axes
(180). Regardless of age, subordinate naked mole-
rats remain in a hypogonadic, “prepubescent”
state, with very small gonads and extremely low
levels of sex steroid hormones regardless of age
(102), and an inactive hypothalamic-pituitary-go-
nadal axis (73, 102). Subordinate females, like
prepubescent animals of other species, regard-
less of age, are anovulatory, a phenomenon at-
tributed to the inactivity of gonadotropin-
releasing hormone (71, 72). Regardless of age, all
subordinates can, however, transition into

FIGURE 3. Prominent pedomorphic traits of the naked mole-rat that po-
tentially lead to extreme longevity and healthspan
Highlighted are various organ and cellular systems that exhibit pedomorphic traits in
the naked mole-rat. Note that the “Cellular and Molecular” phenotypes indicated in-
clude the entire organism and not just the epidermis. A single pedomorphic trait, or
possibly combination of pedomorphic traits, likely contributes to the naked mole-rat’s
prolonged health- and lifespan.
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breeding animals should they be removed from
the stimuli of the dominant female when the
breeding female dies or if removed from their
birth colony. This sexual maturation is not gov-
erned by a typical developmental clock and ap-
pears to be directly linked to changes in
dominance status, occurring in animals as young
as 6 mo or as old as 27 yr.

The transition to breeding status is accompanied
by an estrogen-dependent “puberty-like” growth
surge (53, 148) that continues over the first few
pregnancies. After this occurs, the lumbar verte-
brae increase in length, and the head-to-tail
length increases substantially. Although breed-
ing males have higher levels of testosterone than
subordinates, their transition to dominance is

Table 2. Pedomorphic traits in naked mole-rats and dwarf mice

Naked Mole-Rat Dwarf Mouse

Visually observable
Lower body weight than other mole-rats Lower body weight than wild-type mouse
Absence of hair Shortened snout
Elastic skin Small ears
Absence of external auricles
Small, simple-shaped vomeronasal organ
Non-descended testes

Physiology
Slow growth rates and protracted development Slow growth rates and protracted development
Low metabolic rate Low metabolic rate
Thermolability Thermolability
High levels of heat-shock proteins High levels of heat-shock proteins

Cardiac and circulatory
Sustained blood vessel elasticity Lack of age-related declines in cardiac function
Cardiomyocyte myofilament signature with �-MHC
and skeletal troponin

Maintained levels of �-MHC in heart and skeletal
muscle

Fetal hemoglobin
High hematocrit
Lack of age-related declines in cardiac function

Skeletal
Non-fused growth plates Not known
Maintained cortical bone mineral density

Pulmonary
Neonatal-like lung morphology Not known
Extensive cuboidal epithelium
Undifferentiated alveolar pneumocytes
Decreased alveolar septation
Double capillary pulmonary arrangement

Neurological
Hippocampal distribution of calbindin Signs of increased neurogenesis in adults and

aged animals
Absence of age-related decline in cognitive
function

Improved spatial memory and short-term
learning

Maintenance of neuregulin levels into old age Resistance to Alzheimer’s disease pathologies
and phenotypes

Maintenance of both 3R and 4R tau in adults Slow cerebral growth
Sustained neurogenesis in old animals

Endocrine
Low thyroid hormone levels Low thyroid hormone levels
Low growth hormone levels Low growth hormone levels
High IGF2 levels and low IGF1 Low IGF1

Cellular and molecular
Fructose metabolism Stress resistance
Stress resistance
Hypoxia and anoxia resistance

Emergent traits
Extended lifespan Extended lifespan
Decreased hazard of death Decreased hazard of death
Extended healthspan Extended healthspan

References are highlighted throughout the text.
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not accompanied by a significant increase in
body size (160). Subordinate males have very
small testes that contain fewer Leydig cells and
fivefold lower levels of testosterone than ob-
served in breeding males. This is accompanied
by low sperm counts and poorer quality sperm,
both of which contribute to their impaired fertil-
ity (40). Similarly, throughout life, dwarf mice
exhibit poorer fertility and fecundity than their
wild-type conspecifics.

It is well documented that maintenance of low
levels of sex steroids, facilitated by the removal of
gonads or the attenuation of reproductive hor-
mone signaling, extends lifespan in numerous spe-
cies, including humans (77, 87, 95). Although
naked mole-rat subordinates maintain low levels
of sex steroids, unlike the castrated eunuchs that
reportedly live longer than sexually intact men,
their longevity is shorter than that of breeding an-
imals regardless of sex, so it is unlikely that sex
steroid levels impact their longevity (68, 87, 174).
Interestingly, male Ames mice exhibit low circulat-
ing testosterone and reduced fertility, whereas fe-
male Ames mice exhibit low estrogen levels and
sterility due to the lack of prolactin and GH needed
for luteal function (34, 35).

Protracted Brain Development and
Sustained Neurogenesis

Pedomorphy is unambiguously observed in naked
mole-rat brains, and this may be linked to low
thyroid hormone levels. Thyroid hormone is im-
perative in brain development and maturation,
regulating neuronal and glial development as well
as neuronal connectivity (reviewed in Ref. 96). Hy-
pothyroidism retards the rate of brain growth, as
well as the rate of migration of neurons toward
synaptic targets (96). Although naked mole-rats are

born with more developed and twofold larger
brains than those of day-old mouse pups, they
continue to show signs of brain plasticity and mat-
uration well into their third decade of life. New-
born naked mole-rat brains have a well-developed
hippocampus, a clearly laminated dentate gyrus,
and a large proportion of myelinated white matter
tracts. These precocial traits are shared with hu-
mans and other primates (57, 149, 208). In sharp
contrast, the majority of mouse brain growth and
dentate gyrus development occurs postnatally,
completing brain maturation by 6 wk of age (2,
112).

Despite the presence of a more mature brain at
birth, postnatal brain growth is prolonged in naked
mole-rats, taking six times longer than mice to
attain 90% of adult brain mass (Table 2). Markers
of neurogenic potential, synaptic markers, and do-
pamine expression continue to change substan-
tially until at least 3 years of life (149). Additionally,
naked mole-rats continue to express a develop-
mental isoform of Tau, 3R Tau, long after brain
growth is complete (150) and, like neonates, also
maintain high levels of beta amyloid (62, 64).

Studies in older naked mole-rats indicate that
brain plasticity, maturation, and synaptic refine-
ment still occur in old age, with some evidence that
neurogenesis declines in the second decade of life
(149, 156). Such protracted maintenance of brain
pedomorphic traits and delayed brain maturation
could contribute to extended plasticity/brain re-
modeling, thereby enhancing cellular dynamics to
maintain structural integrity and prevent cellular
senescence and neurodegenerative processes.

In Ames mice, neurogenesis also appears to extend
into adulthood, as evidenced by protracted brain
development (144). Basal levels of hippocampal neu-
rogenesis were elevated in adult Ames mice com-
pared with age-matched wild-type mice (199). These

Table 3. Mouse models of extended longevity share several features with naked mole-rats compared with wild-type
laboratory mice

Wild-Type Mouse Naked Mole-Rat Ames Dwarf Mouse Dietary Restriction (Mouse)

Maximum lifespan, yr 3 35 4 4
Body temperature, °C 37.5 32 35.5 36
Body mass, g 25 40 10 18
Fasting blood glucose, mg/dl 100 75 80 80
Body fat, % C 1 1 2
Thyroid hormones C 2 2 2
Insulin C 2 2 2
Growth hormone C 2 2 2
IGF1 C 2 2 2
IGF2 C 1 2 2
Testosterone C 2 2 2
Fertility C 1 2 2
Proteasome activity and autophagy C 1 1 1
Cancer incidence C 2 2 2

C is the reference value for wild-type mice. Data for other groups are relative to values for wild-type mice.
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animals also produced significantly more new neu-
rons in response to a neurotoxic challenge with
kainic acid (185). This enhanced neurogenesis may
partially explain the maintenance of spatial learning
and memory in old age and following neuronal dam-
age to this brain region (186), as well as the lower
incidence of neurodegeneration (166).

Pedomorphic Cardiovascular
Characteristics

Cardiac function and molecular composition of
adult naked mole-rat hearts show several indica-
tions of a protracted perinatal phenotype into
adulthood. Day-old mouse pups can regenerate
myocardial tissue following myocardial infarction
(88) and apical resection (161), but lose this ability
within the first week of life; human neonates show
similar early life responses (89). Adult naked mole-
rats possibly have signs of retained cardiomyocyte
proliferative capacity (Buffenstein R, unpublished
observations), including a large proportion of cen-
trally localized mononucleated cardiomyocytes
with large diploid nuclei (62). The switch to oxida-
tive phosphorylation within a week of life in mice
promotes ROS production and may switch off cardi-
omyocyte self-renewal and alter cardiomyocyte myo-
filament protein signatures and contractility (165).

The cardiac contractile protein signature of adult
naked mole-rats closely resembles the myofila-
ment protein signature in fetal mice and rats. Al-
though fetal mice predominantly express �-heavy
chain myosin (�-MHC), adult mice predominantly
express �-heavy chain myosin (�-MHC) in their
ventricles. This switch occurs shortly after birth
and is thought to be regulated, at least in part, by
the increase in thyroid hormone in the perinatal
period (76). In stark contrast, adult naked mole-
rats predominantly express �-MHC in their ventri-
cles (83). �-MHC has lower ATPase activity
compared with that of �-MHC and is associated
with lower myofilament sliding velocity and con-
tractility (143). Similar to naked mole-rats, adult
dwarf mice also have a larger proportion of �-MHC
in cardiac tissue (32). This likely contributes to the
low basal cardiac function, low heart rates, and
concomitant parsimonious energy utilization ob-
served in both species (84).

Adult naked mole-rats also express slow skeletal
troponin I (ssTnI) in their ventricles (83). For most
mammals, including humans and mice, this pro-
tein is only highly expressed in utero (Table 2). This
declines shortly after birth with a concomitant in-
crease in cardiac troponin (cTnl). This perinatal
cardiomyofilament signature may reflect the low
thyroid hormone levels throughout life and func-
tional optimization for the hypoxic, hypercapnic,
and more acidic conditions encountered both in

utero and in the naked mole-rat’s deep under-
ground nest.

Perinatal Lung Phenotype

Lungs of adult naked mole-rats also exhibit a suite
of physiological characteristics that are more typi-
cally observed in fetal or juvenile stages of devel-
opment in other vertebrates (Table 2). These are
not simply morphological adaptations to life un-
derground since they differ substantially from
those of other subterranean rodents (129). For ex-
ample, their cuboidal epithelium extends further
into the respiratory system than observed in other
adult mammals. Moreover, there is a greater abun-
dance of undifferentiated alveolar pneumocytes
and markedly decreased alveolar septation (129).
Adult naked mole-rats also use a double capillary
system in the interalveolar septa. These morpho-
logical traits are generally observed in immature or
developing lungs of other mammalian species (31).
It is possible that these adaptations permit more
functional flexibility in naked mole-rat lungs, al-
lowing them to effectively deal with low oxygen
levels and high levels of both carbon dioxide and
water vapor they would likely encounter in their
burrow atmosphere. Notably, the pedomorphic
lung morphology observed in the naked mole-rat
also may be associated with its low thyroid hor-
mone levels; it is well known that thyroid hormone
is necessary for alveolar morphogenesis and the
completion of postnatal pulmonary development
and maturation (204).

Neuroepithelial body morphology is also a pe-
domorphic trait associated with naked mole-rat
lungs. Neuroepithelial bodies detect changes in ox-
ygen availability; these chemosensors typically de-
cline in the first week of life but are maintained
beyond weaning in the naked mole-rat. The neu-
roepithelial bodies of naked mole-rats are larger
and more numerous than in comparatively aged
rats (152). Immunophenotyping of naked mole-rat
neuroepithelial bodies revealed that these cells ex-
hibit signs of active proliferation, suggesting an
enduring fetal state. Maintenance of this fetal ox-
ygen-sensing complex into adulthood may enable
their plastic tolerance of gaseous atmospheres with
variable oxygen availability.

Perinatal-Like Immune System

Naked mole-rats were recently shown to have a
very different splenic immune cell repertoire to
that observed in mice, with high myeloid (~60%)-
to-lymphoid (~40%) cell ratios (91). This ratio is
similar to that in humans and deviates consider-
ably from the predominant (90%) lymphoid bias
observed in mice (133, 145). A similar myeloid
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bias was also observed in circulating immune
cells; high myeloid immune populations reflect a
greater reliance on macrophages, phagocytosis,
and innate immunity, similar to that observed in
neonates (188).

A novel, transcriptionally distinct cell population
was identified in the naked mole-rat myeloid lin-
eage that expressed high levels of anti-microbial
peptides, including lactoferrin and cathelicidin
(91), both of which are commonly found in breast
milk and on perinatal skin (120, 211). This novel
granulocyte population was also found to be lipo-
polysaccharide (LPS)-responsive. Consistent with
these findings, a highly potent novel cathelicidin,
an antimicrobial peptide, was identified in the na-
ked mole-rat (Hg-CATH) (37). Naked mole-rat
macrophages also have a greater phagocytic ability
and higher cytokine secretions induced by toll-like
receptor ligands compared with mice (36). Col-
lectively, these studies suggest that naked mole-
rats, like perinatal individuals, rely more heavily
on myeloid cell-based innate immune responses
to infections and tend to develop a more anti-
inflammatory profile (188).

Similarly, dwarf mice reportedly have low num-
bers of lymphoid cells and double-positive T cells
but are nevertheless immunocompetent (60, 142).
They exhibit decreased proinflammatory activity
that is complemented by increased levels of anti-
inflammatory molecules (42, 69). Age-related
splenomegaly and T-cell-proliferative responses
are delayed, whereas age-sensitive immune mark-
ers (i.e., CD4� or CD8� memory cells) and T-cell
function are maintained at youthful levels in aged
dwarf mice compared with age-matched wild-type
mice, suggesting delayed immunosenescence (70,
74, 75, 86). The delays in aging of immune system
components, reduced inflammatory state, and
similar lymphopenia may be indicative of pedo-
morphic features in both species.

Neonatal-Like Tolerance of
Thermolability

Naked mole-rats are stenothermic, capable of reg-
ulating body temperature over a narrow range of
ambient conditions, outside of which pronounced
thermolability is evident (30). Like human neo-
nates (97) and adult dwarf mice (90, 98), naked
mole-rats have a reduced mass-specific metabolic
rate than allometrically predicted for the species
and have large brown adipose tissue pads (44, 46,
49) used in the employment of non-shivering ther-
mogenesis, in efforts to endothermically maintain
homeothermy (94)—yet they are unable to main-
tain a constant body temperature. This is attrib-
uted to their high surface area-to-volume ratio, low
thermal inertia, and high rates of heat loss (espe-

cially in dry air). Naked mole-rats also rely heavily
on behavioral thermoregulation to reduce the ex-
posed surface area for heat exchange, features that
are shared with human neonates and dwarf mice
(209).

Perinatal-Like Tolerance and
Physiological Responses to Low
Oxygen

Like a fetus in utero, naked mole-rats routinely
encounter hypoxic conditions in their under-
ground milieu, similar to the atmosphere encoun-
tered at the top of Mount Everest. Both neonates
and naked mole-rats show striking similarity in
many physiological responses to low-oxygen envi-
ronments (48, 190). Newborn rats and mice show
greater tolerance of hypoxia than do adults of each
species (134, 181). Hypoxia tolerance decreases
with increasing postnatal age, such that newborn
rats are able to survive 10 –16 times longer (50 min)
without oxygen than adult rats (171). Park et al.
(154) recently showed that adult naked mole-rats
can survive 18 min in pure nitrogen, unlike most
adult mammals that can only survive 3–5 min
when kept in anoxic conditions. Moreover, naked
mole-rats can tolerate prolonged exposure to at-
mospheres containing only 3–5% oxygen (154),
conditions likely encountered in the deep nests
they share with up to 300 of their conspecifics,
microbes, and other respiring organisms.

Both Mole-Rats and Perinatal Young Show
Reduced Heart Function With Hypoxia

In most adult mammals, heart rate increases in
response to hypoxia. However, both naked mole-
rats and perinatal individuals respond by decreas-
ing heart rate and cardiac output (104, 154), which
further decreases energy expenditure and meta-
bolic demands. Hypoxia inducible factor 1�

(HIF-1�) plays an active role in this regard in
both the perinatal heart and the heart of adult
mole-rats, mediating the switch from glucose to
fructose (135, 184), bypassing the rate-limiting
step in glycolysis.

Retention of Fetal Hematological
Parameters

Both naked mole-rats and perinatal mammals (i.e.,
fetuses and neonates) use a different form of he-
moglobin compared with adults (67). Fetal hemo-
globin, present in utero from 2 months of gestation
until 6 months of age in humans, has a higher
oxygen-carrying capacity and is able to more avidly
bind oxygen than adult hemoglobin (41). This
binding of oxygen shifts the oxygen-hemoglobin
dissociation curve to the left, facilitating better
transport around the body, and enables both the
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fetus and the naked mole-rat tissues to maximally
extract circulating oxygen (105). Increases in
blood-oxygen affinity and capacity, facilitated by
polycythemia and higher hematocrits, prolong
aerobic latency and reduce lactate accumulation,
providing maximum ATP generation per mole of
fuel substrate (3, 93, 136).

Brain Tolerance to Hypoxia Involves
Perinatal Mechanisms

High levels of neurotrophic growth factors (61) and
protracted neurogenesis (149) both in utero and in
adult naked mole-rats may also facilitate chronic
tolerance of hypoxia, enabling continuous replace-
ment of damaged tissues. Brain immaturity and
reduced brain metabolic activity may also contrib-
ute to perinatal metabolic rate reduction in the
face of hypoxia. Unlike mouse brain slices kept
under identical conditions, naked mole-rat brain
slices can tolerate complete anoxia for 30 min, fully
recovering after oxygen is restored, whereas those
of mice stop functioning in 1–2 min without oxy-
gen and never recover (118). Mouse neuronal cell
death is attributed to membrane depolarization
and the rapid intracellular influx of calcium and
efflux of potassium. Clearly, the naked mole-rat
shows extreme tolerance to both a lack of oxygen
and possible reperfusion-induced damage thereaf-
ter. Naked mole-rats also show a blunted calcium
response to hypoxia compared with mice, provid-
ing further protection against hypoxia-induced
neuronal death (159).

Moreover, naked mole-rats show a lack of syn-
aptic paired pulse facilitation as well as insensitiv-
ity to adenosine, features commonly observed in
early rodent postnatal development (65, 118).
Adenosine and the NMDA receptor play key roles
in hypoxia-induced toxicity and modulate intra-
cellular calcium influx. In most mammals, the
receptor subunit composition of NMDA recep-
tors in adults differs from neonates. The GluN2D
subunit is strongly implicated in hypoxia toler-
ance, and although adult mouse brains show a
precipitous decline in GluN2D (13% of neonate
levels), adult naked mole-rats retain 66% of the
amounts seen in naked mole-rat neonates, thus
retarding intracellular calcium influx and pro-
tecting neurons of the brain against hypoxia-
induced death (14). Although no data are
available in hypoxic conditions, for dwarf mice it
has been shown that hippocampal mRNA and
protein levels of NMDA receptors (NR)1, NR2A,
and NR2B, and the kainate receptor 2 are
increased in Ames dwarf mice compared with
wild-type controls (185), suggesting potential
protection from adverse conditions.

Perinatal-Like Pain Tolerance and
Physiological Responses to Low Oxygen

Environments with poor gas exchange also can
result in the accumulation of carbon dioxide (CO2).
This can be both lethal and painful. High levels of
CO2 in moist air forms carbonic acid, stimulating
pain receptors and inducing burning sensations in
both eyes and nasal passages. Naked mole-rats
appear unable to sense this pain due to a motif
change in the gene for one of the voltage-gated
sodium channels (Scn9a; Nav1.7), inhibiting spike
initiation under acidic stimuli (194). Naked mole-
rats also lack expression of substance P and calci-
tonin-related gene peptide, contributing to their
insensitivity to acid burn (66, 153).

Acidic conditions associated with hypercapnia
can trigger an inflammatory response in the respi-
ratory membranes of the lungs, and this gives rise
to pulmonary edema (45, 162); naked mole-rats do
not mount these inflammatory responses. Mice ex-
hibit significant pulmonary edema after a 15-min
exposure to 15% CO2, whereas naked mole-rats
show no edema even at a 50% CO2 exposure (153,
194). This hypercapnic tolerance is also a common
feature of newborn mice, where CO2-induced eu-
thanasia takes 10 times longer than that observed
in adults (164). Similarly, human fetuses are also
unaffected by exposure to CO2 (167).

Perinatal-Like Stress Resistance

Naked mole-rats, like long-lived dwarf mice and
human newborns, are resistant to a wide range of
toxins, including xenobiotic compounds, heavy
metals, DNA-damaging agents, and cancer-induc-
ing agents (122, 177). This resistance is observed
both in vivo and using skin fibroblasts in culture
(121, 141). That dwarf mice and naked mole-rats
share this resistance to stressors suggests that the
protective pathways facilitating this are integral to
their protracted longevity. Both Ames dwarf mice
and naked mole-rats exhibit resistance to reactive
oxygen species, thought to be due to increased
expression of the oxidative radical scavenger glu-
tathione as well as glutathione S-transferase (GST),
a molecule that is largely regulated by the tran-
scription factor nuclear factor (erythroid-derived
2)-like 2 (NRF2) (18). Naked mole-rat livers have
three- to fivefold higher levels of GST, heme oxy-
genase (HO1), and NQO1 activity than observed in
wild-type mice (124), thus maintaining its ability to
ward off a number of oxidative stress and xenobi-
otic compounds. High levels of cytoprotective sig-
naling markers and upregulated xenobiotic
pathways are regulated by NRF2 (124). NRF2 is
considered essential for normal fetal growth (116)
and also regulates the transcription of genes
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involved in saccular lung maturation, cell growth
machinery, lymphocyte immunity, and alveolar-
ization both in utero and during postnatal lung
development (38). NRF2 is upregulated in frogs
(198) and domesticated bovids during develop-
ment (80), and thus high levels of NRF2 that con-
tinue into adulthood may very well be considered
pedomorphic.

It also is noteworthy that both dwarf mice and
naked mole-rats have a lower incidence of cancer
than other rodents (52, 63, 75, 100). Furthermore,
experimental studies reveal that both models resist
experimental cancer induction following carcino-
gen or oncogenic administration (126, 168).

Maintenance of “Youthful” Protein
Homeostasis

In many species, the gradual collapse of a cell’s
protein quality-control machinery is a widely ac-
cepted hallmark of aging (127). Age-related de-
clines in protein quality control can result in the
accumulation of damaged proteins and protein ag-
gregates, usually leading to cell death (113). Unlike
other species typically studied (7, 39, 119, 178, 200,
210), naked mole-rats do not appear to show im-
pairments in protein homeostasis with advancing
age. Many molecular chaperones, including the
small heat shock protein HSP25, are present at
high levels in both young and old naked mole-rats
(Buffenstein R, unpublished observations) (173).
Additionally, autophagy and proteasome degrada-
tion in naked mole-rats are maintained throughout
life at levels observed during the developmental
period of a typical mammal (163, 201, 213).

In many model organisms, enhancing protea-
somal activity has been shown to extend lifespan
while concomitantly reducing protein aggregation
and neurodegeneration (115, 139, 205). Due to the
elevated levels of autophagy and proteasome ac-
tivity in naked mole-rats, protein solubility re-
mains relatively unchanged during their long lives,
with no build-up of polyubiquitinated proteins
(157). Higher levels of autophagy have also been
observed in long-lived GH mutant dwarf mice (206,
207). Collectively, these data support the theory
that sustained proteolytic degradation during ag-
ing is beneficial.

Conclusions and Open Questions

Beyond delayed and attenuated Gompertzian mor-
tality hazard, it is noteworthy that two of the lon-
gest-lived mammalian species relative to their
body mass, naked mole-rats and humans, main-
tain a diverse suite of pedomorphic traits well into
old age, a fact that is also true, albeit not to the
same extent, of long-lived dwarf mice (Table 2).

Given the numerous benefits associated with the
retention of youthful or early development features
into adulthood (pedomorphosis), the obvious un-
resolved question is why pedomorphosis is not
routinely employed across the animal kingdom
and what may be the tradeoff such that most other
species opt for rapid somatic maturation and pos-
sible concomitant greater species fitness. For ex-
ample, the axolotl has traded pedomorphic traits
for the ability to ever become a terrestrial-dwelling
animal. Pedomorphosis is presumably favored in
more stable and less competitive environments
that remove the need for a dispersive adult stage
and high levels of reproduction (81).

Physiological systems that can maintain youthful
aspects and facilitate faster repair, phenoplasticity,
and sustained function with advancing age by def-
inition would counter the effects of aging. This line
of thinking can be applied to any individual system
for which pedomorphic traits are observed and for
which aging would result in degeneration. How-
ever, it seems likely that each pedomorphic trait
arose as an adaptation to a specific environmental
pressure rather than to increase longevity per se.
For example, in naked mole-rats, pedomorphic
lung functionality was likely an adaptation to the
low-oxygen and high-carbon dioxide atmosphere,
or their pedomorphic brain plasticity may have
been an adaptation to eusociality. Ultimately, we
still need to address the question of whether a
single factor regulates the “master biological clock”
(191) or whether a combination of pedomorphic
traits is actually causative in the extended lifespans
observed in these models of extended longevity.

Many approaches could be useful to address this
question. Comparative biology has a lot to offer by
examining organisms that exhibit varying pedo-
morphic phenotypes and longevity to understand
the connection between these traits. Molecular bi-
ology will also likely generate useful information by
engineering naked mole-rat pedomorphic traits
into laboratory mice, whereas long-lived mutant
mice will allow tests of causation between pedo-
morphic traits and longevity. �
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