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Abstract

The hippocampus encodes distinct contexts with unique patterns of activity. Repre-

sentational shifts with changes in context, referred to as remapping, have been

extensively studied. However, less is known about transitions between representa-

tions. In this study, we leverage a large dataset of neuronal recordings taken while

rats performed an olfactory memory task with a predictable temporal structure

involving trials and intertrial intervals (ITIs), separated by salient boundaries at the

trial start and trial end. We found that trial epochs were associated with stable hippo-

campal representations despite moment-to-moment variability in stimuli and behav-

ior. Representations of trial and ITI epochs were far more distinct than spatial factors

would predict and the transitions between the two were abrupt. The boundary was

associated with a large spike in multiunit activity, with many individual cells specifi-

cally active at the start or end of each trial. Both epochs and boundaries were

encoded by hippocampal populations, and these representations carried information

on orthogonal axes readily identified using principal component analysis. We suggest

that the hippocampus orthogonalizes representations of the trial and ITI epochs and

the activity spike at trial boundaries might serve to drive hippocampal activity from

one stable state to the other.
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1 | INTRODUCTION

For animals to successfully interact with their environment they need

to construct neural representations that allow them to identify the

current context and select appropriate behavioral responses, and they

need to rapidly transition between these representations when the

context changes. A large literature has suggested that hippocampal

activity patterns represent the environmental context (Colgin,

Moser, & Moser, 2008; Holland & Bouton, 1999; Nadel, 2008; Rudy,

2009) and we have shown that distinct hippocampal representations

are essential for the ability to retrieve context-appropriate memories

while avoiding interference from memories that belong to other con-

texts (Bulkin, Law, & Smith, 2016; Butterly, Petroccione, & Smith,

2012; Smith & Bulkin, 2014). The hippocampus has the capacity to

generate many distinct representations (Alme et al., 2014) and the

environmental factors that induce the formation of a new representa-

tion (i.e., remapping) have been studied extensively (Anderson &

Jeffery, 2003; Colgin et al., 2008; Leutgeb et al., 2005; Leutgeb,

Leutgeb, Moser, & Moser, 2007; Muller & Kubie, 1987; Schlesiger,

Boublil, Hales, Leutgeb, & Leutgeb, 2018). Changes in the nonspatial

characteristics of the context, such as behavioral demands, strategy

and motivation, are also known to induce remapping (Eschenko &

Mizumori, 2007; Ferbinteanu & Shapiro, 2003; Kennedy & Shapiro,

2009; Skaggs & McNaughton, 1998; Smith & Mizumori, 2006;

Terrazas et al., 2005; Wood, Dudchenko, Robitsek, & Eichenbaum,

2000). Studies of hippocampal representations during context transi-

tions have shown patterns that are rapid and abrupt, rather than a

gradual progression through intermediate representations (Jezek,
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Henriksen, Treves, Moser, & Moser, 2011; Kelemen & Fenton, 2010;

Wills, Lever, Cacucci, Burgess, & O'Keefe, 2005). However, these

studies often involve artificial experimental conditions unlike those

commonly encountered in day-to-day experience (e.g., an unexpected

and dramatic change in the visual environment, described as “telepor-

tation” by Jezek et al. (2011)). Much less is known about more mun-

dane and highly predictable changes in the context such as walking

from the living room into the kitchen. Indeed, it is not clear whether

the hippocampus treats contiguous spaces as distinct contexts and if

so, how hippocampal representations transition from one to the

other.

In this article, we leverage a large dataset of 2056 neurons

recorded during a complex multistimulus olfactory discrimination task

with two behaviorally and spatially distinct areas (a trial area and an

intertrial waiting area) and a predictable trial structure to interrogate

the dynamics of hippocampal representations. We discovered that

hippocampal populations form two distinct representations of the trial

and intertrial interval (ITI) epochs, and that the shift between these

representations was accompanied by a surge of activity among sub-

sets of hippocampal neurons. These firing patterns resembled a phase

transition: the hippocampal state before trials transformed to a dis-

tinct state during trials, and then transformed back at the end of trials,

with an identifiable transitory activity pattern between states.

2 | METHODS

2.1 | Surgical and recording methods

Rats were surgically implanted with custom-built moveable electrode

arrays containing 16 insulated platinum iridium tetrodes, each com-

posed of four 17 μm wires (California Fine Wire, Grover Beach, CA).

Arrays were implanted with electrode tips located bilaterally just

above the dorsal hippocampus (3.5 mm posterior and 2.5 mm lateral

to bregma). Following recovery from surgery, the tetrodes were

slowly lowered into the CA1 cell layer and rats began training on the

behavioral task. Tetrodes were advanced over initial training and then

left in place once rats reached asymptotic performance on the behav-

ioral task. Multiunit recordings were sorted into constituent units

using standard clustering techniques. We report on the activity of

2,056 units recorded from 10 rats over 84 sessions (see Supplemen-

tary Table S1), counting individual recordings of units recorded over

sessions (i.e., some units refer to a single neuron that was recorded on

multiple sessions). Field potentials were sampled at 32 kHz from one

wire in each tetrode, and filtered between 0.1 and 6 kHz, a represen-

tative signal was chosen from a tetrode located in the cell layer. All

procedures complied with the guidelines established by the Cornell

University Animal Care and Use Committee.

2.2 | Behavioral procedure and apparatus

Ten adult male Long–Evans rats were trained on a task designed to

induce proactive mnemonic interference. Details on the task and the

relationship between hippocampal activity and interference have been

described elsewhere (Bulkin et al., 2016; Butterly et al., 2012; Law &

Smith, 2012; Peters, David, Marcus, & Smith, 2013). Recordings took

place in wooden chambers with a 60 × 45 cm2 floor and a removable

divider (Figure 1a). One side of the chamber served as an intertrial

waiting area, the other contained two cups filled with odorized dig-

ging substrate. One of the cups was baited with a buried sugar pellet,

reliably marked by odor, and rats learned to discriminate between

eight pairs of odors to retrieve rewards. The left and right position of

the rewarded cup was randomized. On each trial, the divider was

lifted, rats approached the cups and sampled odors, and dug for the

sugar pellet. Rats were free to approach either cup first and they

sometimes approached the baited cup first, simply by chance, and

completely ignored the unbaited odor (Supplementary Figure S1b).

Trials in which the rat sampled the unbaited odor and did not dig were

marked as a correct rejection (Supplementary Figure S1c). Trials were

marked as errors if the rat dug in the unbaited cup (Supplementary

Figure S1d), any displacement of bedding was considered a digging

response. Once the rat reached a behavioral criterion of 90% correct

choices, a new set of odor pairs was presented, and training on this

new set continued for 5 days. A subset of rats (N = 4) learned this

new set in a distinct context and the results of manipulating the con-

text on behavioral performance and hippocampal ensemble activity

have been described previously (Bulkin et al., 2016). In that paper, we

found that place fields and responses to the odor cues remapped with

changes in context and the odor sets. In the present paper, we

focused on the responses within each session at the start and end of

trials and differences between the trial and ITI epochs. We also exam-

ined these firing patterns to determine whether they changed across

learning, across the switch from the first odor set to the second, and

across contexts. In contrast to the place fields and odor responses of

our previous report, trial start/end firing patterns did not show clear

or systematic changes across learning or contexts. Recordings were

only taken on sessions with at least two units, although in most cases

many more units were isolated: at least 10 units in 74/84 sessions

(mean units/session 24.5; Supplementary Table S1 summarizes the

number of units by rat/session).

2.3 | Data analysis

2.3.1 | Instantaneous firing rate

For each neuron, spike counts were binned across the entire session

(100 ms bins) and smoothed with a 5-bin moving average to construct

a vector of instantaneous firing rate (IFR). This trace was normalized

by subtracting the average and dividing by the standard deviation

(i.e., z-scored) to produce a normalized IFR (IFRz). Because units

showed a similar range of activity, analyses showed qualitatively simi-

lar results when using IFR or IFRz, but the latter prevented neurons

with higher overall firing rates from dominating the analyses. Units

with average rates greater than four spikes/second over the entire

session were labeled as putative interneurons, and were not included

in any of the analyses (235/2,291 units were eliminated). Population
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vectors (PVs) were defined as n × 1 vectors of IFRz at a given time,

where n is the number of simultaneously recorded neurons.

The start and end of trials were identified as the moment the rat

crossed an imaginary line corresponding to the location of the remov-

able divider. Generally, rats only crossed this line once in each direc-

tion on each trial, but on those trials in which the rat entered the trial

region and then returned back to the intertrial waiting area only the

first entry was used to mark the start of the trial. Trial start and end

firing rate traces were calculated by linear interpolation of the IFR

vector at times spanning ±3 s on the trial start and end. Spatial

heatmaps were calculated by identifying the average firing rate of

each neuron in 1.5 cm2 bins spanning the floor of the apparatus.
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F IGURE 1 Reliable neuronal responses to the start and end of trials despite large variability in spatiotemporal patterns of behavior. Rats
performed trials in 60 × 46 cm wooden boxes (a). The boxes were bisected by a removable divider (dotted line). One side of the box served as the

intertrial waiting area, and rats performed trials in the other side. During the trials, rats dug for a reward buried in one of two cups, placed in cup
holders indicated by the two circles. Panels (b)–(d) show example positional trajectories, beginning 3 s before the trial start (black squares) and
extending 3 s after the trial end (black circles). (b) A trial where the rat first approached the cup on the right, which was the baited cup for this
trial, and dug for a reward. (c) A trial where the rat approached and sampled the unbaited cup on the left, correctly rejected it, and then dug for a
reward in the baited cup on the right. (d) is similar to (c), except that the rat made an error by digging in the cup on the left, but then approached
the baited cup on the right and obtained the reward. Panels (e) and (f) illustrate the time line and variability in how the trials proceeded. The
median time of arrival at the cup (blue), the time spent retrieving the reward and returning to the intertrial interval (ITI) side of the box (black), and
the duration of the ITI (red) are indicated by the horizontal lines. The histograms illustrate the variability in the duration of these epochs. Panel (f)
shows the same data for trials in which the rats approached both cups (i.e., trials with trajectories like those shown in (c) and (d)). Note the use of
a log scale for the abscissa in (e) and (f). Panels (g) and (h) show data from an example trial start and trial end neuron. At the top, the average firing
aligned on the start (left) and end (right) is shown. Below, a heatmap shows the firing on each trial. At the bottom, the trajectory of the rat is
shown for a period matching the above plots, with color indicating the instantaneous firing rate (IFR) of the neurons. The horizontal line indicates
the position of the divider [Color figure can be viewed at wileyonlinelibrary.com]

584 BULKIN ET AL.

 10981063, 2020, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23180 by C

ornell U
niversity, W

iley O
nline L

ibrary on [26/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


2.3.2 | Local field potentials

The local field potential data was downsampled to 2 kHz. The theta–

delta ratio was identified by filtering the signal (theta: 5–12 Hz; delta:

2–4 Hz) with a noncausal finite impulse response (FIR) filter, calculat-

ing root mean square (RMS) power with a 500 ms sliding window, and

taking the quotient.

2.3.3 | Running speed

Running speed was computed by applying a 1 s boxcar average to

position. Average firing rate was calculated for binned running speeds

(15 bins) separately for times near the trial start and end (±1 s), in the

trial (1 s after the start to 1 s before the end) and in the ITI (1 s after

the trial end to 1 s before the trial start). A linear regression was calcu-

lated for data collected in each epoch to describe multiunit activity as

a function of running speed. The slope and intercept of these regres-

sions were compared for neurons showing a slope that was signifi-

cantly different from 0 (F-test, p < .01).

2.3.4 | Generalized linear model

The strategy for applying a generalized linear model (GLM) that orthogo-

nalized the contributions of spatial and temporal covariates was adapted

from Truccolo, Eden, Fellows, Donoghue, and Brown (2004) and Lepage,

MacDonald, Eichenbaum, and Eden (2012). This approach relies on a

geometry in the Fisher information of the GLM likelihood estimator to

disambiguate activity due to a combination of multiple covariates. Apply-

ing this method to two-dimensional spatial data required a parameteriza-

tion of spatial firing functions as activity depends on an interaction

between the x and y coordinates defining the rat's position. As such, we

first described both the temporal and spatial firing rate by fitting Gaussian

curves and surfaces to the average firing data:

fspace x, yð Þ= β1 e
−
ðx−μxÞ2
2σ2x

−
ðy−μyÞ2
2σ2y

0
@

1
A+C

fstart tsð Þ= β2 e
−

ts −μsð Þ2
2σ2s

 !
+C

fend teð Þ= β3 e
−

te −μeð Þ2
2σ2e

 !
+C

We modeled the coefficients β1, β2, β3 by fitting a Poisson family

GLM with a linear link function. Given the rat's location (x, y), and the

time relative to trial start (ts) and end (te), the firing rate for each neu-

ron was modeled as:

E FiringRateð jx, y,ts,teÞ= fspace x, yð Þ+ fstart tsð Þ+ fend teð Þ

We also computed a model which included an additional factor for

running speed:

frunspeed rsð Þ= β4 rsð Þ+C

Because a linear link function in a Poisson GLM includes the possi-

bility for negative rates, the β1, β2, β3, β4 parameters were restricted

to be greater than or equal to 0. Since the true values could never be

exactly zero, this does not break down the asymptotic orthogonaliza-

tion results from Lepage et al. (2012). The restriction of the parameter

space means that parameters estimated to be 0 would have a nega-

tively biased standard error in comparison to the traditional Wald test

and likelihood ratio tests for GLMs. For this reason, we instead used a

normal approximation significance test adapted from the normal the-

ory bootstrap intervals given in Efron and Tibshirani (1994) to test if

each parameter was significantly different than 0. If the bootstrapped

sample for a parameter contained more than 10% of values selected

exactly at 0, then a quantile-based significance test was used (Efron &

Tibshirani, 1994). The quantile-based significance test was used in this

case as the normality assumption on the bootstrapped sample no lon-

ger holds; however, the quantile-based tests were not used across all

observations to allow p-values to be calculated to more than three sig-

nificant digits for significant parameters. The bootstrap was com-

pleted by randomly sampling 1 s blocks of data for each neuron with

replacement. The blocking was done to account for the temporal

dependencies in the data set (Gonçalves & Politis, 2011). Within each

neuron, 250 bootstrap samples were created for each parameter in

order to obtain a p-value. A significant effect was tabulated as any

coefficient value with p < .01, for comparisons that grouped trial start

and end responses together these p values were Bonferroni

corrected.

2.3.5 | Cross-trial distance analysis

To compute cross-trial instantaneous ensemble firing rate similarity

(Figure 3a–c), PVs of IFR were assembled for times spanning ±3 s in

100 ms intervals around each trial's start and end. For each time point

in each trial, the pairwise correlation between the associated PV and

all PVs from all other trials at each time point was calculated. The

average of these values was taken for each rat to form a cross-trial

correlation map for the session, each pixel representing the average

correlation between PVs taken from two time points across all pairs

of trials. Correlation was calculated using both Pearson's r and

Kendall's τ.

2.3.6 | Classification of trial versus ITI responses

To identify the ability of neuronal populations to identify the current

epoch, we trained linear discriminant classifiers to mark epoch based

on activity. We first assembled PVs spanning ±3 s around the trial

start and trial end, labeling each vector with the epoch in which it

occurred. We took a random subset of half of these vectors and

trained a linear discriminant classifier, separately for data occurring

around the trial start or trial end, and tested the classifier on the

remaining 50% of the data. This process was repeated 1,000 times, on
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each iteration a different random subset was used to train/test the

performance of the classifier. The overall performance of the classifier

was measured as the median performance across iterations, and the

fifth percentile of iterations was used to identify whether the classifier

performed above chance.

2.3.7 | Principal component analysis

To investigate population dynamics at the start and end of trials

across the entire dataset, we created a synthetic dataset by sam-

pling activity from defined time points around the trial start and

end. This allowed visualization of activity in coordinates scaled by

key sources of variance across a large population of neurons. One

strategy for forming this synthetic dataset would be to randomly

select activity from each neuron at a given time with respect to the

trial boundaries; however, this approach would randomize covari-

ance between neurons. Instead, we selected vectors from each ses-

sion, preserving information about interneuron covariance when

possible (i.e., within session) and randomizing when covariance data

was unavailable (i.e., across sessions).

For each recording session (ses), we constructed PVs (PV
*

) as the

IFR at time points (t) spanning ±5 s around each trial's (trial) start and

end in 100ms intervals.

PV
*

n×1
ses,trial,tð Þ=

x1
x2

..

.

xn

2
666664

3
777775

In the above equation, x1 indicates the firing rate of neuron

1 from recording session ses, trial number trial at the time specified

by t. For instance, PV
*

8,14,1ð Þ would contain the firing rates of all

neurons recorded during Session 8, on Trial 14, 5.0 s before the trial

start.

We then randomly selected a trial from each session and com-

bined the PVs across sessions (ν = 84 total sessions), holding t con-

stant, to form pseudo-PVs PPV
*

.

PPV
*

N×1 iter,tð Þ=

PV
*

1,rand,tð Þ
PV
*

2,rand,tð Þ
..
.

PV
*

ν, rand,tð Þ

2
66666664

3
77777775

PPV
*

contains the firing rate of all N neurons (N = 2,056), on ran-

domly selected trial, at some specific time (t) with respect to the trial

start or end. It indicates what an ensemble of N neurons might look

like at a given time.

We repeated this process over 200 iterations, and over all time

windows, to form a N × M matrix. Each column of the matrix contains

an iteratively selected ensemble firing rate at some time with respect

to trial start or end.

PPMN×M = PPV
���*

1,1ð Þ PPV
���*

1,2ð Þ � � � PPV
���*

1,niterð Þ PPV
���*

2,1ð Þ � � � PPV
���*

nt,niterð Þ
��

The total number of columns of PPM, denoted as M, is the prod-

uct of the number of iterations (niter) and the number of sampled time

points (nt):

M= niter �nt =200 �200=40,000

PC scores for the first three components of PPM were plotted

directly, and a trajectory through PC space was calculated by applying

the coefficients to produce these components back to the raw peri-

event firing data.

An identical approach was taken for space, but here the grouping

variable we used to combine vectors across sessions was the location

of the rat associated with the instantaneous activity rather than the

time of occurrence:

PPV
*

space X,Y, iterð Þ=

PV
*

1,rand,X,Yð Þ
PV
*

2,rand,X,Yð Þ
..
.

PV
*

ν, rand,X,Yð Þ

2
66666664

3
77777775

Rather than selecting randomly across trials, the spatial PVs are

selected from the set of firing rates associated with a specific (X, Y)

location in space. X and Y were bins that spanned the range of

the recording apparatus, in 20 pixel (about 3 cm) square bins. After

eliminating bins that were not visited by all of the rats in the experi-

ment, 208 spatial bins remained, producing a spatial pseudopopulation

matrix (PPV
*

space
) with a similar size as the one used in the temporal

analysis:

Mspace = niter �n X,Yð Þ =200 �208=41,600

2.3.8 | Statistical analysis

No statistical tests were used to predetermine sample size, but the

sample was similar or larger to those generally used within the field.

Paired t tests were used to compare the slope and intercept from

regressions of firing rate to running speed for each session, the firing

rate at the trial start for correct and error trials, and pairwise correla-

tion of PVs taken from within or across epochs. PV similarity for mat-

ched disparities of space were submitted to a one-way repeated

measures analysis of variance (ANOVA; factors: epoch, distance). Sig-

nificance testing for the GLM used to categorize neurons based on

response type, and classifier used to identify epoch based on popula-

tion activity are described above.
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3 | RESULTS

We recorded the responses of hippocampal CA1 neurons while rats

were engaged in a memory-guided odor discrimination task (Butterly

et al., 2012). On each trial, a removable divider was lifted and rats ran

from an intertrial waiting area to approach two cups containing

scented digging medium (Figure 1a). Odors were drawn from a set of

16 distinct odors, presented in eight pairings with one odor in each

pair always rewarded with a buried sucrose pellet. The odors and right

or left position of the rewarded cup was randomized across trials. On

some trials (Figure 1b,e), the rats happened to approach the rewarded

cup first by chance, and dug for a reward. On other trials rats

approached the unbaited cup first (Figure 1f), and either correctly

refrained from digging (Figure 1c) or incorrectly dug for a reward

(Figure 1d) after which the trial continued until they obtained the

reward in the baited cup. Following the reward, rats returned to the

intertrial waiting area. Recordings took place over a period of up to

10 days, as rats learned reward contingencies for two sequentially

presented sets of odor pairings in a task design used to probe for

mnemonic interference. Results of the investigation into interference

have been reported previously (Bulkin et al., 2016).

3.1 | Individual neurons respond at trial boundaries

Many neurons showed transient increases in activity at the start and

end of trials, often selective for one of these two epochs. Figure 1g,h

shows the responses of example “trial start” and “trial end” neurons.

The upper panels show responses that were strongly time-locked to

the start and end of trials, despite considerable variability in timing of

behavior (Figure 1e,f). The lower panels of Figure 1g,h show the tra-

jectory of the rat with color indicating the IFR. These neurons fre-

quently showed elevated activity across large areas but time locked to

the trial start or end, suggesting that activity was better explained by

the occurrence of the trial events rather than spatial factors.

The large numbers of neurons with activity patterns like those

seen in Figure 1g,h led to transient increases in multiunit firing rate

that began just before the start of trials (as the divider was lifted) and

then again at the end of the trials as rats returned to the intertrial

waiting area (Figure 2a–d). Similar to the example responses shown in

Figure 1g,h, this activity was not purely attributable to spatial location

since firing occurred at the start and end point along the full width of

the box. Most neurons were selective for either the trial start or trial

end (Figure 2e, blue and red), which may be partly attributable to the

fact that rats traveled in different directions even though these

epochs occurred in similar locations. However, these apparent “spa-

tial” regions of elevated firing were clearly modulated by the start and

end of trials. Firing measured at the same locations during epochs

associated with the trial start and end was distinct (Figure 2g, red and

blue traces), and was elevated compared to firing far from trial bound-

aries (Figure 2g, black trace), indicating that activity was not modu-

lated solely by spatial location.

Transient activity at the start and end of the trials was not likely

associated with sharp-wave ripples. Rats were rarely immobile at these

times, and field potentials showed robust theta oscillations, and so rip-

ples were probably infrequent at these times (Buzsáki, Horváth, Urioste,

Hetke, & Wise, 1992). Increased activity at the trial start/end was also

not solely attributable to increased running speed at the start and end

of trials. Although activity was correlated with running speed overall,

we found that firing rates were higher at the time of the trial start and

trial end than at instances of similar running speed occurring during the

trial and ITI epochs, indicating that trial start/end activity was higher

than expected based on running speed alone (Supplemental Figure S1).

To statistically confirm this, we computed a series of linear regressions

for each session defining multiunit firing rate as a function of running

speed, separately for data selected from the trial start and trial end and

the ITI. The slopes of the resulting regression lines taken from the trial

start/end data were similar to the slopes based on ITI data (paired

t test, p > .01 for start and end), yet the intercept was significantly

higher for data selected from the trial start (paired t test, p < 10−6) and

end (paired t test, p < 10−6). A similar analysis showed that trial start/

end responses were not due to acceleration (paired t test on intercepts;

start: p < 10−15 end: p < 10−23, Supplementary Figure S1b). This sug-

gests that activity at these times showed a global increase not attribut-

able to running speed or acceleration.

Interestingly, the magnitude of the trial start response (average fir-

ing rate ±500 ms around trial start) was somewhat larger on trials in

which the rat subsequently made a correct choice (Figure 2h;

641 units, paired t test: p < .001). This effect was probably not driven

by reward related activity, or a reduction in the reward prediction

error when rats identified the odor and could therefore predict an

impending reward. Rats rarely arrived at the first cup within 500 ms

(Figure 1e,f), and we saw no evidence of a decision (e.g., a change in

trajectory) before this time.

To assess the relative contributions of spatial and temporal factors in

shaping the activity of individual neurons, we modeled the firing rate of

each neuron as a function of the rat's location and the time of the

nearest trial start and trial end. Because position and time partially covar-

ied (i.e., position was not random at times near the trial start and end),

we used an extension of a constrained Poisson GLM that orthogonalizes

covariates to disambiguate the independent contributions of factors

affecting firing rate (Truccolo et al., 2004). This strategy has been previ-

ously used specifically for distinguishing effects in the face of nuisance

correlations between factors shaping hippocampal activity (Lepage et al.,

2012; MacDonald, Lepage, Eden, & Eichenbaum, 2011). For each neuron

we fit three Gaussian functions to the average activity: two one-

dimensional curves that described firing rate as a function of time with

respect to trial start and end, and a two dimensional surface that

described firing rate as a function of the location of the rat. We then

described the firing rate of the neuron as the weighted sum of these

three functions (effects of trial start, trial end, and position), using the

projection described in Lepage et al. (2012) to form estimates of tempo-

ral effects that could not be accounted for by covariation between the

times of trials and the location of the rat. Finally, we computed the statis-

tical significance of each coefficient via a normal approximation of the
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bootstrap estimate (Efron & Tibshirani, 1994). Supplementary

Figure S2a–f shows responses and fits of example temporally and spa-

tially modulated neurons that were disambiguated by this analysis.

The majority of neurons were significantly modulated by space

(1,601/2,056; Figure 3a). Yet, many of these neurons showed addi-

tional modulation by the trial start or end (859/1,601; Bonferroni

corrected for tests of trial start and end responses). Importantly,

because the model orthogonalized spatial and temporal covariates,

the trial start/end responses were not spuriously identified due to rats

traversing through a place field at the beginning or end of trials.

Rather, neurons represented both location and time with respect to

the trial boundaries. Approximately half of the neurons showed some

modulation by one of the temporal factors (1,004/2,056, Bonferroni

corrected), and similar numbers of cells had activity that was affected

by the trial start and trial end (start: 688 neurons; end: 757 neurons).

Plotting the average firing rate for start/end responsive and spatially

sensitive neurons revealed that firing patterns were similar for neu-

rons with a trial start/end response whether or not the neuron was

also modulated by space, and that spatially sensitive neurons that

lacked a trial start/end response showed larger firing rates during ITI

epochs (Figure 3b,c; Supplemental Figure S2g,h). In order to control

for the possible contribution of running speed to trial start/end firing,

we repeated the GLM and included a linear term for running speed.

Firing was modulated by running speed for many neurons

(773/2,056), but accounting for variance due to running speed had lit-

tle effect on the number of neurons marked as responsive to the trial

start/end (Supplemental Figure S2i,j).

3.2 | Distinct population states represent the trial
and ITI

Inspection of the neural activity in Figure 2 revealed two important

details about the dynamics of hippocampal firing as rats started and

ended trials: a prominent increase in firing at the trial boundaries

(Figure 2a,b), and distinct populations of neurons were recruited dur-

ing trial and ITI epochs (Figure 2c,d). Unlike the transient activity
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F IGURE 2 Increase in activity of hippocampal neurons at trial start and trial end. Panels (a) and (b) show average multiunit firing rate aligned
on trial start and trial end. Firing rates of each unit were binned (100 ms bins) and smoothed with a five-bin moving average. The shaded region
indicates SEM over units. Panels (c) and (d) show average normalized firing rate aligned on trial start and end for all units. Binned activity was

normalized by z-scoring using the average and standard deviation of each unit's rate over the entire session. The trial-averaged traces were then
sorted based on the time of the maximum rate. Panel (e) shows a scatterplot of peak firing rate of each neuron in a window ±3 s with respect to
trial start (abscissa) versus trial end (ordinate). For each unit a single crosshair is plotted, centered on the average peak rate, and extending ±1 SEM
(over trials). Units with SEM overlapping with unity are shown in gray (513/2,056 units), those above unity are shown in blue (810/2,056 units),
and those that fall below unity are shown in red (733/2,056 units). Panel (f) shows the average firing rate in 1.5 cm2 spatial bins. Points between
the centers of the bins have been linearly interpolated. The horizontal line indicates the location of the removable divider (see Figure 1a). Panel
(g) shows average multiunit firing rate for locations in 3 cm bins in the axis orthogonal to the divider (i.e., vertical in (f)), calculated separately for
rates occurring within 2 s of the start of the trial (red) or end of the trial (blue) or more than 2 s from either (black). Panel (h) shows average firing
rate around the start of the trial plotted separately for correct (green) and error (pink) trials, only neurons with trial start responses have been
included (688 neurons, Figure 3a). The inset shows the average activity in a window ±500 ms on the trial start. Shaded region and error bars
indicate SEM over units [Color figure can be viewed at wileyonlinelibrary.com]
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increases at the trial boundaries, nonoverlapping populations during

trials and ITIs are potentially consistent with spatial models of hippo-

campal activity as these two epochs were necessarily in distinct spa-

tial locations (Figure 1a). We next performed a series of population

analyses to understand whether differences in firing patterns during

the trial and ITI could be explained simply by differences in the rat's

position, or whether trial boundaries marked a state transition such

that differences in firing patterns exceeded what would be expected

based on positional disparity alone.

To measure ensemble similarity, we tabulated PVs (vectors con-

taining firing rates in 100 ms bins) and computed pairwise correlations

between them. We averaged the pairwise correlation coefficients

between PVs drawn from different trials, at times surrounding the

start and end of trials (±3 s). Figure 4a,b shows the average values

(across recording sessions) for each pair of comparisons. The color of

each point in the images indicates the average cross-trial correlation

between one temporal bin and another. Points lying on unity quantify

the similarity of ensemble activity from trial to trial at the same time

with respect to the trial start/end, while off-unity points indicate

cross-trial similarity at proximal times.

Examination of the cross-trial correlation plots (Figure 4a,b)

reveals several striking characteristics of large scale hippocampal

activity patterns. Both plots show a strong peak at the center, indicat-

ing that trial start/end firing patterns are similar from one trial to the

next, an outcome which reflects the reliable bursts of firing seen at

the trial boundaries (Figure 2a,b). Correlations along the unity line

declined from this peak as time passed from the trial start, but

remained high throughout the trial epoch. For example, firing patterns

occurring ~1.5 s into the trials (see ●, Figure 4a) were surprisingly well

correlated across trials. At that time, the rats had typically arrived at

the first odor cup (Figure 1e,f), encountered one of the 16 possible

odor cues, and decided whether to dig or proceed to the second cup,

depending on the valence of the odor cue. Even more noteworthy, fir-

ing patterns taken from quite distant times within the trials were also

well correlated. For example, the firing patterns occurring 0.5 s into

the trial were surprisingly similar to firing occurring 2 s later (i.e., 2.5 s

into the trial, see ♦, Figure 4a), despite the fact that the rats were

engaged in markedly different and highly variable behaviors at those

two time points (Figure 1e,f). Rats were nearly always approaching

the first odor cup at 0.5 s, but at the 2.5 s time point they could be

digging in the first cup, investigating or digging in the second cup

(if the first cup was not rewarded), consuming the reward, or returning

to the ITI side of the chamber. This was not likely driven by spatial

location since the trial structure meant that rats rarely occupied the
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(a)F IGURE 3 Independent spatial and
temporal responses in overlapping
neuronal populations. Panel (a) shows a
Venn diagram indicating the classified
responses of neurons. Each unit was
submitted to a generalized linear model
(GLM) which orthogonalized components
defined by spatial and temporal Gaussian
fits to average response data. The diagram
tallies the number/percent of neurons
with a significant term in the model for
the noted component. Panels (b) and
(c) show average normalized firing rate for
units with (+) and without (−) significant
spatial and trial start (b) or trial end
(c) coefficients. The GLM successfully
identified start and end responsive
neurons, evidenced by the clear peak in
the average firing rate of these neurons
compared with unresponsive neurons.
Units classified as exclusively spatial
(i.e., start−/end−/space+) showed
somewhat elevated firing rates in the
intertrial interval (ITI; before the trial start
in (b) and after the trial end in (c)) [Color

figure can be viewed at
wileyonlinelibrary.com]
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same location at these two different time points (Figure 1b–d). Firing

patterns within the ITI epoch also showed a large degree of similarity

(Figure 4a,b, lower left and upper right, respectively), although these

correlations were significantly lower than those for PVs taken from

the trial epoch (Figure 4c; paired t test: T(83) = 4.59, p < 10−4).

Another important feature that is apparent in these plots is the

sharp boundary between the trial and ITI epochs. In contrast to the

remarkable self-similarity of firing patterns taken from within an

epoch, correlations were significantly lower for vectors drawn from

different epochs (Figure 4c; paired t tests: ITI vs. cross T(83) = 18.89,

p < 10−31; trial vs. cross T(83) = 14.27, p < 10−23). This suggests that

activity was distinct across the two epochs (Figure 4a,b, upper left

and lower right). Indeed, correlations for vectors taken only 1 s apart

but from different epochs (i.e., 0.5 s before and 0.5 s after trial start,

see ■, Figure 4a) were much lower than those for vectors taken twice

as far apart but within the trial epoch (see ♦, Figure 4a). Similar pat-

terns were found when correlations were measured using Kendall's

rank correlation coefficient, which is arguably more robust to the

relatively sparse firing patterns seen in hippocampus (Neymotin, Tal-

bot, Jung, Fenton, & Lytton, 2017) (Supplementary Figure S3a–c).

The striking self-similarity of firing patterns within each epoch,

and the sharp decline in similarity when rats transitioned from the trial

epoch to the ITI, suggest that hippocampus treats these two epochs

as distinct contexts. Consistent with this idea, we could accurately

decode population activity as belonging to the trial or ITI using linear

discriminant analysis. We used an iterative process wherein we

trained linear classifiers using a randomly selected subset of half of

the PVs and measured performance of the classifiers on the remaining

half. We repeated this process 1,000 times, providing a distribution of

performance values (proportion of PVs correctly classified). Classifier

performance (Figure 4d) was virtually always above chance, and

showed high accuracy: on average 85% of vectors surrounding the

trial start and 84% of vectors surrounding the trial end were correctly

classified. Classification errors were most likely to occur near the trial

boundaries (Supplementary Figure S3f,g), a period when ensembles

encoded the boundary itself rather than the surrounding epoch.
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F IGURE 4 Distinct population states during trials and intertrial intervals (ITIs). Panels (a) and (b) show cross-trial PV correlations around trial
start and trial end. For each session, firing rates were tabulated to form PVs and pairwise correlations were computed using vectors in a 6 s
window around the trial start (a) or end (b) from different trials (each pairwise correlation involved two unique trials at two time points).
Correlation values were averaged to form a map for each recording session; the average of these maps is shown. Points in the image between
bins have been linearly interpolated. The symbols overlaid on the plot in (a) highlight times of interest discussed in the text. Panel (c) shows a
summary of cross-trial correlations. The height of the bars indicates the average value in the corresponding quadrant of the maps shown in (a,b).
Error bars indicate SEM across sessions. Panel (d) measures the performance of a linear discriminant classifier trained with a subset (50%) of PVs
selected from trials and ITIs to classify the epoch of the vector (i.e., whether it occurred in an ITI or a trial). The classifier was tested separately on
vectors selected from a window 3 s before/after the trial start (red points) and trial end (blue points). Confidence intervals were estimated using
an iterative process, randomly selecting vectors 1,000 times, with the 5% lower confidence interval identified as the fifth percentile of the
iterated dataset. Lines span from this point to the median performance across iterations for each session. The abscissa indicates the number of
simultaneously recorded neurons in the session. Panel (e) shows pairwise correlations between population vectors as a function of the distance
between positions that the rat occupied when the activity occurred. Correlations were computed separately for pairs in which both vectors were
selected from trial epochs (cyan), ITI epochs (blue), or when one vector was selected from each epoch (green). The dashed line highlights a
comparison discussed in the text. Error bars indicate SEM [Color figure can be viewed at wileyonlinelibrary.com]
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While hippocampal output reliably differentiated the task epochs,

the increased similarity of ensemble activity within epochs could sim-

ply be due to spatial factors since any two PVs drawn from a single

epoch were more likely to correspond nearby locations than two PVs

selected from different epochs. Even the greater similarity within trials

than within the ITI could have been influenced by spatial factors since

spatial behavior was more constrained during trials. In order to deter-

mine whether these spatial factors did, in fact, account for the within-

epoch similarity, we compared PV correlations for subsets of data

with fixed ranges of spatial distance. We labeled each pair of PVs

using the distance between the associated positions (locations occu-

pied by the rat at the time of the PV) and binned pairwise correlation

values based on distances (Figure 4e). If ensemble activity was

governed purely by space, the selected epoch would make no differ-

ence in the correlation values and an overall decrease in correlation

with distance would be expected. In fact, even at very low distances,

PVs were more similar within epochs than across epochs, and within

trial similarity was higher than within ITI similarity (repeated measures

ANOVA: main effect of epoch F(2,166) = 19.15, p < 10−7; main

effect of distance F(21,1743) = 182.9, p < 10−15; interaction F

(42,3486) = 6.053, p < 10−15). Indeed, correlations for PVs taken

10–20 cm apart during a trial were as similar as PVs taken just 1 cm

apart but which spanned the trial start boundary (Figure 4e, dashed

line). This increased similarity between vectors selected from trial

epochs persisted at larger distances, with a noticeable “bump” in the

similarity curve for PVs that occurred when positions were separated

by about 20 cm. This distance is of particular note as the odor stimuli

used in the experiment were presented in cups separated by 20 cm

(Figure 1a) and we occasionally observed examples of individual neu-

rons that showed increased activity as rats sampled the odors and dug

in the cups, regardless of which cup (see also Eichenbaum, Kuperstein,

Fagan, and Nagode (1987) and Muzzio et al. (2009)). The observation

that the trial and ITI epochs were more similar than would be

suggested by spatial considerations alone is consistent with the idea

that the hippocampus represents the two epochs as distinct contexts

and differentiates them accordingly.

3.3 | Dynamics of hippocampal ensembles during
state transitions

The dissimilarity between population activity in trial and ITI epochs,

above what is predicted from space alone, suggests that hippocampal

ensembles undergo a comprehensive state transition at the start and

end of each trial. Analogous to the role of heat in phase transitions,

the increase in hippocampal multiunit activity at the start and end of

trials might serve to drive this transition, pushing the hippocampal

state past a critical point to allow a shift in representational state

(Steyn-Ross, Steyn-Ross, Wilson, & Sleigh, 2010). As such, we next

sought to characterize the hippocampal state itself rather than relying

on pairwise correlations to make inferences about the clustering of

hippocampal representations. We took a dimension reduction strategy

using principal component analysis (PCA). Because PCA produces an

orthogonal transformation to a set of linearly uncorrelated variables

accounting for descending quantities of variance, it allows for a repre-

sentation of high dimensional neural activity that captures important

covariation among ensembles. However, while the individual compo-

nents identify a mapping of the raw data based on variance, the sign

of PC scores is irrelevant. Thus, averaging PC scores across sessions

provides no information on how a typical ensemble changes. To cir-

cumvent this issue, we built a large matrix of pseudo-PVs containing

the firing rates of all of the units in our dataset (n = 2056). To combine

PVs across multiple sessions, we labeled vectors based on their time

relative to the trial start and trial end. We took activity from 100 ms

bins extending ±5 s around each trial's start and end. We then ran-

domly sampled (with replacement) a vector from a given bin from each

session 200 times, generating typical 2,056 dimensional vectors for

that moment in time. Repeating this process across bins produced a

matrix with 40,000 observations (200 time points × 200 iterations).

We subjected this entire matrix to PCA. Importantly, although the

pseudo-PV matrix was assembled using temporal labels, PCA is blind

to these labels and simply provides loadings (i.e., a coefficient for each

neuron) such that the first principal component accounts for maximal

variance and each additional component accounts for a decreasing

amount of variance.

Figure 5a shows a three-dimensional plot of the scores of the first

three principal components for each vector in the pseudo-PV. Points

taken from the ITI (before trial start or after trial end) are shown in

cooler colors, and points during trials (after trial start or before trial end)

are shown in warmer colors. A curve showing the trajectory through PC

space was constructed by applying the coefficients identified from PCA

back to the (raw) average firing rates in the time ±5 s around the trial

start and end. The projections of this three-dimensional representation

to each of the two-dimensional planes are shown as “shadows” on the

axes. PC1, capturing the largest amount of variance, distinguished the

epochs: trials and ITIs formed completely nonoverlapping clusters

(Figure 5b; see blue vs. red clusters in Figure 5a). PC2 identified trial

boundaries, clearly distinct from the trial and ITI epochs, but not from

each other (Figure 5c). PC3 made this distinction, differentiating trial

start activity from trial end activity (Figure 5d). These results provide a

view of the state transition of hippocampal ensembles over the course

of trials. Despite a variety of individual neural firing patterns in the trial

and ITI epochs, clear clusters of ensemble activity form that identify

these distinct contexts. At the start and end of trials, ensembles transi-

tion from one representation to the other by traversing orthogonally

through the trial start and trial end PC space.

To confirm that this approach yielded a view of the hippocampal

state that was not artificially imposed by grouping vectors based on

time with respect to trial boundaries, we repeated the analysis but

combined vectors across sessions using a purely spatial method. To

do this, we formed a matrix of PVs for each session, and labeled each

vector with the position of the rat at the time associated with the

activity. We then sampled PVs from each session (with replacement),

concatenating vectors that occurred when the rat was in the same

spatial bin (3 cm2 bins). In this manner, we formed a large matrix of

vectors in 2,056 dimensional spaces, each vector marking typical pop-

ulation firing rates for a particular spatial location. This is an identical
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procedure to the method described above but here vectors were

combined based on spatial location of the rat rather than the time

with respect to trial start and end. We subjected the spatial pseudo-

PV to PCA to obtain coefficients for each neuron, and used the coeffi-

cients to create average spatial maps in PC space (Figure 5e–g). The

pattern is strikingly similar to what we found with our time locked

analysis. PC1 distinguished the trial and ITI epochs, it was most dis-

tinct between regions associated with trials and ITIs (compare

Figure 5e top and bottom). PC2 marked the trial boundaries, values

near the divider are distinct from values far from the divider

(Figure 5f). In contrast to the time locked analysis where PC3 distin-

guished the trial start and end (Figure 5d), the spatially binned PCA

did not clearly distinguish them (Figure 5g), possibly because the trial

start and end occurred in overlapping spatial locations.

The strong hippocampal transitions at trial boundaries were spe-

cifically dependent on trial start/end responsive neurons. When the

same analysis was restricted to the subset of neurons with significant

trial start or end responses as identified with our GLM approach

(Figure 3), the shape of the resulting pattern in PC space was virtually

identical (Supplementary Figure S4a). Yet, the pattern was completely

different when the neurons without trial start/end responses were

analyzed (Supplementary Figure S4b), despite the similarity in sample

size (1,004 responsive vs. 1,052 unresponsive cells). The separation

between ITI and trial PVs captured by PC1 was preserved when trial

start/end cells were excluded, but the transitional signals between tri-

als and ITIs that were evident in PC2 and PC3 were completely

eliminated.

4 | DISCUSSION

In this article, we examined the responses of many hippocampal neu-

rons while rats engaged in an olfactory memory task with a repeated

trial structure. We focused our analyses on activity differences

between trials and ITIs, as well as the transition between these

epochs. We observed a large-scale shift in the activity state of the

hippocampus at the start and end of trials, a transient increase in

activity that marked a transition between two highly distinct states.

We found that individual neurons were modulated by both spatial and

temporal factors, driving an ensemble representation that clearly iden-

tified the trial and ITI epochs and the boundaries between them, the

trial start and trial end. The dynamics resembled a phase-transition-

like pattern: populations transformed from one steady state to

another at the moment of trial start or end, with a transient increase

in firing that occurred at the transitions.

The self-similarity of hippocampal firing patterns from one trial to

another was striking. Although different trials shared some behavioral

and sensory features (removal and insertion of the divider, running

speed patterns, investigation of odors, digging for and consumption of

the reward), there was also a substantial variation from one trial to

the next. Differences included the trajectory of the rat, the olfactory

experience of 16 distinct odors, the position of the reward, and

whether the rewarded odor was encountered first by chance or the

initial odor cup was rejected in favor of the second. Notably, we

observed highly similar firing patterns across trials despite these

highly distinct patterns of sensory input and motor behavior. Because

the sequence of events in the trials was determined by the voluntary

behavior of the rat and randomization procedures (e.g., left or right
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F IGURE 5 Principal component analysis (PCA) indicates a phase
transition at trial start and end. Using a bootstrap approach, a
pseudopopulation vector (PV) matrix was assembled to simulate
typical firing vectors at time points ±5 s around the trial start and end.
This matrix was submitted to PCA to obtain principal component
scores for each time sample. (a) Three-dimensional plot of the first
three principal component scores (brightly colored illustration in the
center). Two-dimensional shadow projections of the three-
dimensional data are shown on the walls (the three darker images),
illustrating the degree to which each pair of principal components
segregates the trial epochs. Colored dots indicate scores of the
principal components around the trial start and trial end, with warmer
colors indicating times in the trial while cooler colors indicate times in
the ITI. The start and end are indicated with black markers (square
and circle respectively). A line traces the trajectory through PC space,
computed by applying the coefficients obtained by PCA and taking
the weighted mean of average perievent firing (Figure 1c,d). The
colored surface is shown to aid interpretation of the three-
dimensional structure, and was formed by linear interpolation. (b–d)
The PC data shown in (a), plotted as a function of time for each
principal component. As with the line shown in (a), these values were
computed by applying the coefficients obtained from PCA to the
average firing rate traces for each unit. (e–g) Spatial PC heatmaps
computed using the same strategy as in Panel (a), but assembling a
pseudopopulation matrix based on spatial location rather than the
time of individual PVs (see text). Coefficients from PCA were applied
to the individual unit spatial firing heatmaps to compute a weighted
average. The maps have been linearly interpolated between sampled
locations [Color figure can be viewed at wileyonlinelibrary.com]
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location of the rewarded odor cup), the rat's experience became

increasingly distinct as the trial progressed. Neural activity also

decreased in similarity over the course of a trial, but remained surpris-

ingly well correlated. This is especially striking for correlations of time

points that were several seconds apart, when location, behavior, and

sensory experience were virtually always different (Figure 4a). Nota-

bly, these observations also suggest that differences in firing patterns

between the trial and ITI are probably not attributable to behavioral

differences between the two epochs. If large differences in behavior

did not cause differential firing within the trial epoch, it is unlikely that

such behavioral differences could explain differential firing patterns

across epochs. Overall, these results are consistent with previous find-

ings that hippocampal firing patterns occupy a local minimum in state

space where firing patterns are relatively stable and insensitive to

small changes in the environment, until environmental change is suffi-

cient to abruptly push the firing patterns into a new state space (Wills

et al., 2005). However, previous studies involved subtle changes in

the shape of the environment and similar foraging behaviors. Here,

we show that a self-similar hippocampal state persists even in the face

of highly variable sensory input and behaviors during the performance

of a complex memory task.

The observation of an abrupt shift in the representation when the

rats transitioned between the trials and ITIs is similar to findings from

studies that manipulated the environmental context (Jezek et al.,

2011; Kelemen & Fenton, 2010; Wills et al., 2005), suggesting that

the hippocampus treated the trial and ITI areas as distinct contexts

even though they were both part of a familiar contiguous environ-

ment which was only divided by a barrier for part of the time. Consis-

tent with this idea, firing patterns in the ITI and trial were more

distinct than would be expected based on spatial distance alone, even

for immediately adjacent locations (Figure 3e). This may be due to the

markedly different cognitive-behavioral demands and motivational

characteristics of the trial and ITI epochs since changes in the behav-

ioral context are also known to induce remapping (Eschenko &

Mizumori, 2007; Griffin, Eichenbaum, & Hasselmo, 2007; Kennedy &

Shapiro, 2009; Skaggs & McNaughton, 1998; Smith & Mizumori,

2006). Indeed, Kelemen and Fenton (2010) showed that even in a sin-

gle environment, the hippocampus can maintain two distinct maps

and rapidly shift between them as needed to meet dynamic behavioral

demands. Our findings are consistent with the idea that the hippo-

campus encodes contextual information, broadly defined to include

spatial and nonspatial features of the situation (Smith & Bulkin, 2014).

The large multiunit firing bursts we observed at the trial start and

trial end were not simply an artifact of increased running speed. How-

ever, we cannot rule out the possibility that the bursts may have been

driven by a complex combination of sensory and motor factors includ-

ing a sudden increase in speed in a particular direction or toward a

particular goal cup, which coincides with a large change in the visual

scene due to the removal of the divider. Cognitive factors such as

expectations about the upcoming events of the trial may also play a

role and interact with these sensory-motor variables (e.g., Skaggs &

McNaughton, 1998). Regardless of the specific causal factors, the fact

that the multiunit bursts coincided with the transition between two

distinct hippocampal representations raises the possibility that the

bursts might serve to drive firing patterns out of one attractor space

and into another (Rolls, 2007; Wills et al., 2005), by pushing activity

past a critical point to allow a shift in representational state (Steyn-

Ross et al., 2010; Tkačik et al., 2015). Previous studies have identified

neuronal responses near the start or end of trials (Ainge, Tam-

osiunaite, Woergoetter, & Dudchenko, 2007; Grieves, Wood, &

Dudchenko, 2016; Hollup, Molden, Donnett, Moser, & Moser, 2001;

Smith & Mizumori, 2006), but the potential impact of these responses

on population dynamics was only apparent when we examined the

activity of large numbers of neurons.

Another intriguing, if speculative, possibility is that trial start and

end bursts may be involved in demarcating event boundaries. A grow-

ing literature has implicated the human hippocampus in the process of

event segmentation (Baldassano et al., 2017; Ben-Yakov & Dudai,

2011; Ben-Yakov, Eshel, & Dudai, 2013; Ben-Yakov & Henson, 2018;

Ben-Yakov, Rubinson, & Dudai, 2014; DuBrow & Davachi, 2013; Mil-

ivojevic, Varadinov, Vicente Grabovetsky, Collin, & Doeller, 2016), the

process of breaking continuous experience into discrete episodes

(Zacks & Swallow, 2007). Hippocampal involvement in encoding the

sequence of events (Agster, Fortin, & Eichenbaum, 2002; Davachi &

DuBrow, 2015; Fortin, Agster, & Eichenbaum, 2002; Hasselmo &

Eichenbaum, 2005) is consistent with an event segmentation account.

The boundaries of behaviorally defined events often coincide with

spatial boundaries, and neurons in the hippocampus and related struc-

tures are sensitive to physical barriers (Hinman, Chapman, & Has-

selmo, 2019; Lever, Wills, Cacucci, Burgess, & O'Keefe, 2002; Solstad,

Boccara, Kropff, Moser, & Moser, 2008) and other important spatial

boundaries such as entering a room or a new street (Javadi et al.,

2017; Spiers, Hayman, Jovalekic, Marozzi, & Jeffery, 2015). Indeed,

event boundaries are often defined by a change in context, such as

moving from one room to another or changing from one behavioral

task to another (Horner, Bisby, Wang, Bogus, & Burgess, 2016), as in

the present study. Our results contain some fascinating similarities to

human studies of event segmentation. The trial start/end responses

we observed are consistent with BOLD increases seen at event

boundaries in human subjects (Baldassano et al., 2017; Ben-Yakov &

Henson, 2018) and our finding that a stronger response to the trial

start was associated with better performance is consistent with the

well-documented link between event segmentation and memory per-

formance in humans (Sargent et al., 2013; Zacks, Speer, Vettel, &

Jacoby, 2006). However, we emphasize that our task was not

designed to investigate event segmentation, but was instead designed

to study the hippocampal role in mitigating proactive interference

(Bulkin et al., 2016). The highly predictable and repeating trial struc-

ture of our task is quite different from studies of spontaneous event

segmentation in humans (Sargent et al., 2013; Zacks et al., 2006), and

we cannot distinguish between representational changes caused by

the beginning of a new event from representational shifts caused by

behavioral and environmental factors that cooccurred with the trial

boundaries, such as the sensory-motor factors mentioned above and

the expectation of a discrimination test and reward. Whether the

rodent hippocampus, like the human hippocampus, is active at event
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boundaries that are not associated with large behavioral and environ-

mental changes remains an important open question.
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