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The retrosplenial cortex (RSC) has recently begun to gain widespread interest because of its anatomical
connectivity with other well-known memory structures, such as the hippocampus and anterior thalamus,
and its role in spatial, contextual, and episodic memory. Although much of the current work on the RSC
is focused on spatial cognition, there is also an extensive literature that shows that the RSC plays a critical
role in a variety of conditioning tasks that have no obvious spatial component. Many of these studies
suggest that the RSC is involved in identifying and encoding behaviorally significant cues, particularly
those cues that predict reinforcement or the need for a behavioral response. Consistent with this idea,
recent studies have shown that RSC neurons also encode cues in spatial navigation tasks. In this article,
we review these findings and suggest that the encoding of cues is an important component of the RSC
contribution to many forms of learning.
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The role of the retrosplenial cortex (RSC) has been a subject of
study since the 1970s, but it has only recently begun to gain
widespread interest from the neurobiology of learning and memory
community. Much of the current interest arises from the observa-
tion that the RSC shares functional similarities and anatomical
interconnections with the more well-studied hippocampus. The
RSC is reciprocally interconnected with the hippocampal system
via the subicular complex, anterior thalamus, and entorhinal cortex
(for reviews, see Aggleton et al., 2010; Bucci & Robinson, 2014),
and RSC lesions impair spatial navigation (Harker & Whishaw,
2002; Keene & Bucci, 2009; Sutherland, Whishaw, & Kolb, 1988;
Vann & Aggleton, 2002), contextual memory (Keene & Bucci,
2008b; Kwapis, Jarome, Lee, & Helmstetter, 2015; Robinson,
Poorman, Marder, & Bucci, 2012), and episodic memory (Bowers,
Verfaellie, Valenstein, & Heilman, 1988; Valenstein et al., 1987).
There is also a growing body of rodent neurophysiology and
human functional MRI (fMRI) data on the RSC role in spatial
navigation (Alexander & Nitz, 2015, 2017; Cho & Sharp, 2001;
Maguire, 2001; Miller, Vedder, Law, & Smith, 2014), and the RSC
plays a central role in the default mode network, which supports
constructive memory processes (Hassabis, Kumaran, Vann, &
Maguire, 2007; Schacter & Addis, 2007). Given current interest in
the RSC role in navigation and memory, including current work in
our laboratory, this literature will surely continue to grow. How-
ever, there is also an extensive but largely separate body of data
indicating that the RSC plays a critical role in processing behav-

iorally significant cues, even in tasks that have no obvious spatial
component. We believe these findings will be critical for under-
standing the underlying contribution of the RSC to a wide variety
of learning and memory situations, including spatial and contex-
tual memory. In this article, we review these findings and discuss
new data on how this cue processing function might fit into a
broader account of RSC functions.

Findings from Discriminative Avoidance and
Approach Model Systems

Perhaps the most extensive and systematic research on the role
of the RSC was done by Michael Gabriel and colleagues using an
instrumental discriminative avoidance model system (for review,
see Gabriel, 1993). In this task, subjects (rabbits) were placed in a
large activity wheel and two different pure tone auditory stimuli
(0.5 s) were delivered: one tone, the conditional stimulus (CS�),
was followed 5 s later by a footshock, which could be avoided by
taking a step in the wheel, whereas the other tone, the CS–,
predicted no reinforcement. Using this model system, and a for-
mally similar water-rewarded discriminative approach task, Ga-
briel and colleagues (Gabriel, 1993) performed numerous lesion
and neuronal recording studies to identify the neural circuitry
supporting this form of instrumental learning, which includes the
anterior cingulate cortex, RSC, and their interconnected thalamic
nuclei, the mediodorsal thalamus and anterior nuclear group, re-
spectively. Unfortunately, much of this literature does not appear
in search results because the phrase “posterior cingulate cortex”
was used to describe the target area (Brodmann’s Areas 29b, 29c,
and 29d) rather than “retrosplenial cortex,” which is more com-
monly used in the rodent literature.

These studies typically involved recording tone-evoked multi-
unit activity in control and lesion subjects throughout learning,
including recordings during the naïve state prior to learning, during
each of the daily training sessions and during asymptotic perfor-
mance after the task has been well learned. With learning, multi-
unit activity in these regions begins to discriminate between the
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cues, with greater firing in response to the CS� than the CS– (see
Figure 1). These studies identified a highly plastic, rapid learning
system that encoded the predictive value of the auditory tone cues
during the earliest stages of learning, including the medial genic-
ulate nucleus, basolateral amygdala, medial dorsal thalamus, and
anterior cingulate cortex (Poremba & Gabriel, 1997a, 1997b).
Multiunit activity in these regions began to preferentially encode
the CS� immediately at the outset of training, even before subjects
exhibited significant behavioral evidence of learning. In contrast,
preferential encoding of the CS� generally developed more slowly in
the RSC and the interconnected anterior thalamic nuclei and only
appeared after many training trials (Gabriel & Orona, 1982). The
temporal characteristics of this plasticity led Gabriel to character-
ize these as rapid and slow learning systems, centered on the
anterior cingulate cortex and the RSC, respectively. The idea is
that rapid plasticity in the anterior system could promote highly
flexible fast learning, particularly in emergency conditions such as

aversive learning, whereas the slower plasticity of the RSC system
was specialized for encoding the reliable regularities of the envi-
ronment, which only become apparent through repeated experi-
ences. The effects of lesion studies were consistent with this idea:
Damage to components of the rapid learning system impaired
performance during the initial stages of learning but allowed
subjects to eventually reach normal levels of asymptotic perfor-
mance (Gabriel, Kubota, Sparenborg, Straube, & Vogt, 1991;
Gabriel, Sparenborg, & Kubota, 1989). In contrast, lesions of the
slow learning system had no effect on the initial acquisition of the
avoidance response: Subjects learned normally, but performance
dropped off after the subjects reached asymptote (Gabriel, Sparen-
borg, & Stolar, 1987). Interestingly, the RSC is probably not the
final repository for the associative memory, because lesions of the
anterior thalamic component of this circuit made after extensive
overtraining do not impair behavior (Hart, Poremba, & Gabriel,
1997).

Gabriel used the term “significance coding” to describe the fact
that neurons within this region were highly sensitive to the behav-
ioral relevance of the cues (Gabriel, Foster, Orona, Saltwick, &
Stanton, 1980). That is, the neural responses did not encode the
hedonic value of the cues, nor did they encode the reinforcing
stimulus or the specific behavioral response that was required.
Instead, the neurons seemed to be sensitive to the cues as predic-
tors of reinforcement and the need for a behavioral response. For
example, subjects could be trained to perform appetitive and
aversive versions of the task on alternating days. In that situation,
RSC neurons preferentially responded to a cue that predicted an
impending footshock and the need for a locomotor response during
the avoidance task, and on alternating days, they also preferen-
tially responded to a cue that predicted water reward for licking
a drinking spout (Figure 1B; Freeman, Cuppernell, Flannery, &
Gabriel, 1996). RSC neurons also responded to other task
events that had predictive value, such as the insertion of a
drinking spout that signaled the opportunity to respond in the
appetitive task (Smith, Freeman, Nicholson, & Gabriel, 2002).

Another component of the significance coding idea is that
neural responses should amplify sensory cues that signal im-
portant outcomes, such as pain or danger. Consistent with this,
RSC firing was sensitive to changes in the salience and prob-
ability of the tone cues. After training with a standard 500-ms
tone cue, a change to either a shorter (200 ms) or longer (5,000
ms) tone induced a heightened response in the RSC (Sparenborg
& Gabriel, 1990), an effect that was particularly prominent in
the anterior cingulate cortex. Heightened responses also oc-
curred during test sessions when the predictive tone was infre-
quent (20% of trials compared with 50% of trials during train-
ing; Stolar, Sparenborg, Donchin, & Gabriel, 1989). Thus,
manipulations that altered the salience or probability of these
cues evoked a heightened neural response. Overall, these find-
ings clearly point to an RSC role in encoding cues on the basis
of their predictive value. Less is known about the RSC role in
behavioral response output. However, RSC neuronal firing has
been shown to ramp up to the time when subjects initiate an
avoidance or approach response, which may function as a “go”
signal sent to the motor systems of the brain (Kubota, Wolske,
Poremba, Kang, & Gabriel, 1996; Smith et al., 2002).

A

B

Figure 1. Neuronal responses to auditory cues during discriminative
approach and avoidance learning. (A) Tone-evoked multiunit neuronal
responses to the auditory cues are shown in the form of z scores normalized
to pretone baseline, with 400 ms of firing data shown in 10-ms time bins
(Smith et al., 2002). Before learning, RSC neurons respond equally to
auditory cues of different tonal frequencies (left). After learning, neuronal
firing in response to the predictive tone (CS�, black bars) is significantly
greater than to the nonpredictive tone (CS–, white bars). (B) RSC neuronal
responses are shown for subjects trained to perform the approach and
avoidance tasks on alternating days (Freeman et al., 1996). Note that RSC
neurons preferentially respond to the reinforcement-predictive auditory cue
in both tasks, regardless of differences in tonal frequency, hedonic value
(appetitive vs. aversive) and response requirements (approach or avoid-
ance). RSC � retrosplenial cortex; CS � conditional stimulus.
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Findings From Other Learning Tasks

In the time since the Gabriel research program, an extensive
body of work has accumulated on the RSC role in a variety of
conditioning tasks. An exhaustive review of this work is beyond
the scope of this article, but many of the findings have reinforced
the idea that the RSC is critical for processing behaviorally sig-
nificant cues. Overall, the data suggest that the RSC is not needed
for simpler forms of learning, but it becomes engaged when the
task becomes more complex and cue–outcome relationships be-
come more difficult for subjects to discern. For example, the RSC
and related thalamic structures do not appear to be necessary for
Pavlovian eyeblink or fear conditioning when the CS and US
overlap in time (i.e., delay conditioning; Gabriel et al., 1996;
Kwapis et al., 2015), but the RSC is needed for the acquisition and
extinction fear conditioning with a trace interval between the CS
and US (i.e., trace conditioning; Kwapis et al., 2015). It has been
proposed that trace conditioning relies on explicit memory
whereas delay conditioning does not (Weike, Schupp, & Hamm,
2007), so this finding may suggest an RSC role in explicit memory
for cue–outcome associations (Kwapis, Jarome, Lee, Gilmartin, &
Helmstetter, 2014). However, one study has failed to find an RSC
role in trace eyeblink conditioning (Weible, McEchron, & Dister-
hoft, 2000), and another has shown that the RSC is needed for the
retrieval of a remote delay-conditioned fear memory (Todd, Mehl-
man, Keene, DeAngeli, & Bucci, 2016).

In trace-conditioning tasks, the trace interval creates added
difficulty in discerning cue–outcome relationships. The RSC can
also be engaged by tasks for which cue–outcome relationships are
difficult to discern because of the presence of two or more poten-
tially important cues. For example, the RSC is required for reversal
of a dual cue discriminative eyeblink response, even without a
trace interval (Berger, Weikart, Bassett, & Orr, 1986). RSC lesions
also impair feature negative discrimination learning (Keene &
Bucci, 2008a; Robinson, Keene, Iaccarino, Duan, & Bucci, 2011),
in which subjects must learn that a given cue (e.g., a tone) predicts
reinforcement when it is presented alone but that same cue predicts
no reinforcement when presented along with a second cue (e.g., a
light). Similarly, RSC lesions impaired the ability to respond
appropriately to compound cues formed by combining elemental
cues that individually require incongruent behavioral responses
(Nelson, Hindley, Haddon, Vann, & Aggleton, 2014). The dis-
criminative avoidance task described in the previous section also
fits this general framework because it involves two cues that must
be disambiguated. Consistent with this, RSC lesions impaired a
visuospatial conditional discrimination involving two different
cues, each requiring a different response (go-left or go-right;
Bussey, Muir, Everitt, & Robbins, 1997).

Although the above findings highlight the RSC sensitivity to the
relationship between cues and reinforcement or behavioral re-
sponse requirements (i.e., cue–outcome and cue–response contin-
gencies), another body of work has shown that the RSC is needed
for the ability to spontaneously form associations among neutral
stimuli. Specifically, lesions or DREADD inactivation of the RSC
impair sensory preconditioning (Robinson, Adelman, Mogul, Ihle,
& Davino, 2018; Robinson et al., 2014), in which subjects are
initially exposed to repeated pairing of two neutral stimuli (e.g., a
tone and a light) without any reinforcement. During the subsequent
conditioning phase, one of the cues (e.g., the light) is paired with

reinforcement. The subjects are then tested with the second cue
(the tone, which was never paired with reinforcement): Respond-
ing to the tone indicates that subjects must have formed an asso-
ciation between the light and tone during the initial precondition-
ing phase. On the basis of these findings and the observation that
the RSC is critical for contextual memory processes (Keene &
Bucci, 2008b; Kwapis et al., 2015; Robinson et al., 2012), Bucci
and colleagues proposed a theoretical account in which a key
contribution of the RSC is to generate stimulus–stimulus associa-
tions between neutral stimuli, resulting in the formation and stor-
age of a configural representation of the context (Bucci & Robin-
son, 2014; Todd & Bucci, 2015). The observation that contextual
fear memory is prevented in subjects that do not have sufficient
time to explore the context prior to delivery of the shock (the
immediate shock deficit) is consistent with this idea (Todd, DeAngeli,
Jiang, & Bucci, 2017), as is the apparent tendency for the RSC to
become engaged when subjects must deal with multiple cues as
described above. However, it is worth noting that much of the
currently available data are agnostic as to whether the RSC gen-
erates coherent configural representations or simply encodes indi-
vidual cues that are strongly associated with a particular context
(Bar & Aminoff, 2003). Preliminary neurophysiological evidence
from our laboratory suggests that RSC ensembles do encode
contexts (Miller, Serrichio, Tse, Shi, & Smith, 2017), but careful
manipulation of contextual variables will be needed to fully re-
solve this issue.

Recent Findings on the RSC Role in Processing
Navigational Cues

Conditioning tasks involving explicit cues are not the only
domain in which the RSC is involved. The RSC has also been
implicated in processing navigational cues, and much of this
literature has come from studies of human subjects (for review, see
Miller et al., 2014). RSC lesions frequently cause impairments in
spatial navigation and a striking feature of this deficit is the
inability to use landmarks to construct routes to goal locations (Ino
et al., 2007; Kim, Aminoff, Kastner, & Behrmann, 2015; Maguire,
2001; Takahashi, Kawamura, Shiota, Kasahata, & Hirayama,
1997). fMRI studies in healthy subjects show RSC involvement
when subjects view visual scenes containing prominent landmarks
(Morgan, Macevoy, Aguirre, & Epstein, 2011), especially when
subjects were asked to make spatial judgments about the scenes
(Epstein, Parker, & Feiler, 2007; Wolbers, Weiller, & Büchel,
2004). The RSC even appears to preferentially encode permanent
features of the environment rather than temporary moveable ob-
jects, which would be less useful for navigation (Auger, Mullally,
& Maguire, 2012; Auger, Zeidman, & Maguire, 2015). RSC le-
sions are known to impair navigation in rodents (Harker & Whishaw,
2002; Keene & Bucci, 2009; Sutherland et al., 1988; Vann &
Aggleton, 2002), and as with humans, some observations suggest
an RSC role in the use of navigational cues. For example, in some
maze studies, rats with RSC lesions were only impaired when
inconsistencies between intra- and extramaze cues were introduced
to the task (Nelson, Powell, Holmes, Vann, & Aggleton, 2015;
Pothuizen, Aggleton, & Vann, 2008; Vann & Aggleton, 2004).
Others have found that RSC inactivation had little effect on radial
maze performance until access to visual cues was removed by
testing the rats in darkness (Cooper, Manka, & Mizumori, 2001;
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Cooper & Mizumori, 1999). The RSC is known to contain head
direction cells (Cho & Sharp, 2001), and a recent study found that
some RSC neurons simultaneously exhibit two opposing direc-
tional preferences in an environment with two distinctive orienting
cues, suggesting a unique RSC sensitivity to landmarks (Jacob et
al., 2017).

Findings from our laboratory have also provided indirect sup-
port for the idea that RSC neurons encode navigational cues
(Smith, Barredo, & Mizumori, 2012, Figure 2). We trained rats on
a blocked alternation task, in which they approached one location
for chocolate milk reward for the first half of each daily training
session and then they switched to a different location for the
second half. Rats learn this task, reaching an asymptote of approx-
imately 84% correct in 6.7 sessions, on average. In solving this
task, rats invariably employed a “win–stay” strategy: Even after
reaching asymptotic performance, they repeatedly went to the first
location as long as rewards continued to be dispensed there, and
they only switched to the new location after failing to get a reward
at the initial location (Figure 2A). Thus, in addition to being a
reinforcing stimulus, the rats used the reward as an important
navigational cue that instructs the rat to return to the same location
on the next trial. Consistent with this idea, a large number of RSC
neurons (�45%) selectively responded to either the east or west
reward. These responses were not simply a response to the choc-
olate milk reward per se (because they were selective for one
reward location or the other), nor were they purely spatial (large
changes in firing rate occurred at the time of the reward even when
the rat’s position did not change). Instead, these responses were
driven by the co-occurrence of the reward and the specific location
where it was obtained. We have seen these responses throughout
the rostro-caudal extent of the RSC granular b region, suggesting
that this is a very large-scale signal involving many neurons.
Remarkably, this phenomenon emerged on the very first day of
training (Figure 2C) before the rats had shown clear behavioral
evidence of learning (performance was not statistically different
from chance performance). This suggests that encoding the reward
location is a primary concern for the RSC at the outset of learning
and the win–stay approach that rats took suggests that this was
related to the fact that the reward location is potentially useful as
a cue. However, this finding was serendipitous and our interpre-
tation is hypothetical, as this task was not designed to test hypoth-
eses about navigational cues and we could not isolate the dual roles
of the reward as a navigational cue and a reinforcing stimulus.

In order to conclusively determine whether RSC neurons encode
navigational cues, we developed a T maze task in which the reward
location was explicitly cued by a flashing light, which served as a
beacon that the rats learned to approach for a chocolate milk
reward (Figure 3; Vedder, Miller, Harrison, & Smith, 2017). At the
start of each trial, the rat was placed on the stem of the maze facing
away from the choice point. As soon as the rat turned around to
approach the choice point, the experimenter turned on one of the
two flashing light cues to indicate the reward location for that trial
(right or left). Right and left trials were randomly intermixed, and
the light remained on until the rat arrived at the reward location
and consumed the reward. We chose to use a beacon, rather than
one or more landmarks, because the light has an unambiguous
onset time and we could be confident that the rats would attend to
this highly salient cue. Additionally, onset of the light cue occurred

Figure 2. RSC responses during blocked alternation. (A) Rats were trained
to approach the east arm for reward for the first 15 trials of each daily training
session and the west arm for the next 15 trials. Each day, the rats were given
a 30-s lights-out period after Trial 15 to indicate that the reward location was
about to shift to the west arm. However, even in well-trained subjects (�80%
correct overall), the rats never learned to use the lights-out cue to shift their
responding. Instead, they invariably went to the old (east) reward location until
no reward was found there, and only then did they shift to the west arm. (B)
Average behavioral performance is shown for a baseline recording session
prior to learning (pretraining foraging for randomly placed rewards, RF), the
first training session (Day1), the session midway through acquisition (Mid),
and during asymptotic performance (Asymp). (C) The percentage of RSC
neurons that exhibited a significant response that was selective for both the
receipt of the reward and the location (east or west) at each of the same training
stages as in Plot B. (D–E) Two examples of RSC neurons that selectively
responded to one reward location are shown in the form of peri-event time
histograms showing 10 s of firing data before and after the receipt of the
reward at Time 0, with trial-by-trial rasters below each histogram. The neuron
in Plot D fired selectively for rewards received at on the east arm, whereas the
neuron in Plot E fired on the west arm. RSC � retrosplenial cortex. See the
online article for the color version of this figure.
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several seconds before the rat arrived at the reward so we could
distinguish responses to the navigational cue and the reward.

Nearly 30% of RSC neurons responded to the light cue even
before it had acquired any predictive value (i.e., during a pretrain-
ing session in which the light was randomly presented at the choice
point on half the trials). This large initial response was likely
because of the high salience of the flashing light cue. However, the
percentage of light-responsive neurons more than doubled to 63%
on the very first day of training and remained high for the rest of
the training sessions (Figure 3C). Thus, the RSC emitted a massive
response to the critical predictive cue at the very earliest stages of
learning, similar to the reward location responses of the previous
experiment. Interestingly, these neuronal responses did not distin-
guish between the left and right light positions but instead re-
sponded equally to both. This was unexpected given the RSC role
in the discrimination tasks, and the reasons for this are not known.
However, this may have occurred because the left and right lights
were equally predictive of reinforcement and both required the
same kind of locomotor approach response, unlike the cues in a
discrimination task which predict different outcomes and require
different behavioral responses. Nevertheless, these results clearly
confirm that RSC neurons encode navigational cues, consistent

with the findings of fMRI and lesion studies described at the
beginning of this section.

Interestingly, we also found that RSC neurons exhibited the
same kind of responses to the reward locations that we observed in
the previous study (Figure 4B). However, unlike the previous
study, these responses did not suddenly emerge on the first day of
training. Instead, they gradually increased in prevalence through-
out learning (Figure 4A). This difference is particularly striking
because the stimuli that evoked the response (0.2 ml of chocolate
milk delivered to a metal cup at the end of the maze arm) were the
same in both experiments. This comparison suggests that when-
ever a particular stimulus can serve as a navigational cue, regard-
less of whether it is an explicit cue, such as the light, or a more
abstract cue, such as the reward location in a win–stay task, it
evokes a large and rapid response in the RSC. When the same
stimuli are not useful as navigational cues, the RSC may still
encode them but not as rapidly or robustly (Figure 4C).

Lastly, we found that individual RSC neurons frequently exhib-
ited discrete responses to several different stimuli and task events.
For example, the neuron illustrated in Figure 4D emitted a burst of
spikes at the start of the trial, when the rat was placed on the stem
of the maze, another burst after the cue light was illuminated, and

Figure 3. RSC responses during a cued T maze task. (A) Rats were trained to approach a flashing light cue
positioned over the right or left reward location (left reward trial is illustrated). The rat was placed on the stem
of the maze facing away from the choice point and the light was illuminated as soon as the rat turned around
and took a step forward (dashed line). Before regular training sessions began, we recorded baseline responses
to a light cue positioned at the choice point (dashed circle), which was illuminated during half of the trials in
a random manner. This light was only used during this pretraining session and it did not predict the reward
locations, which were also randomly selected. (B) Rats learned this task in 6.4 training sessions, on average, and
reached an asymptote of 94% correct. (C) The percentage of RSC neurons that exhibited a significant response
to the light cue are shown for each training stage (pretraining, PT, the first training session, the session mid-way
to asymptote, Mid, and asymptotic performance, Asymp). (D) An example RSC neuron that responded to the
onset of the light cue (Time 0) is shown in the form of a peri-event time histogram along with a raster display.
RSC � retrosplenial cortex. Adapted from “Retrosplenial Cortical Neurons Encode Navigational Cues, Trajec-
tories and Reward Locations During Goal Directed Navigation,” by L. C. Vedder, A. M. P. Miller, M. B.
Harrison, & D. M. Smith, 2017, Cerebral Cortex, 27, pp. 3716–3717. Copyright 2017 by Oxford University
Press. Adapted with permission.
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a third burst as the rat arrived at the reward location (with the last
burst selective for the right reward location). We only used one
explicit cue in this task (the light), but this tendency toward
“multiresponsivity” was quite common, with approximately 67%
of RSC neurons exhibiting at least two separately identifiable
responses. This may suggest that RSC neurons would be predis-
posed to encode multiple cues, consistent with the RSC role in
encoding contexts (Bucci & Robinson, 2014; Todd & Bucci,
2015). In the instrumental discrimination studies described above,
RSC neurons responded to both the predictive and nonpredictive

tones, and the discrimination resulted from the fact that firing was
increased in response to the predictive tone (Figure 1A).

Remaining Questions and Concluding Remarks

Together, the results reviewed here suggest that the RSC
plays a particular role in encoding behaviorally significant cues.
This role is apparent in spatial tasks in which the RSC may
uniquely encode navigational cues such as landmarks and bea-
cons, and in nonspatial conditioning tasks in which the RSC
encodes important predictive cues and cues that may be impor-
tant components of the context. The specific factors that make
a given task critically dependent on the RSC are not fully
understood, but the need to process multiple cues or complex
contingencies is a common feature of RSC-dependent conditioning
tasks, and the capacity to cope with multiple cues is also important for
most spatial navigation and contextual memory tasks. This is notably
reminiscent of discussions about the factors that lead to hippocampal
involvement in various memory, navigation, and nonspatial condi-
tioning tasks (e.g., Fanselow, 2000; McEchron & Disterhoft, 1999;
Rudy & Sutherland, 1995). Nevertheless, the tendency of RSC neu-
rons to produce large-scale responses to any task-relevant discrete cue
is a remarkably consistent finding, suggesting that the encoding of
cues reflects an important component of RSC function.

Figure 4. Other RSC responses from the cued T maze task. (A) The
percentage of RSC neurons that exhibited a significant response that was
selective for both the receipt of the reward and the location (left or right)
is shown for each training stage (pretraining, PT, the first training session,
the session mid-way to asymptote, Mid, and asymptotic performance,
Asymp). Note that these responses did not emerge immediately on the first
day of training. (B) An example neuron with a reward-location response is
shown in the form of a peri-event time histogram with a raster display.
Trials with the reward on the right are shown in blue (lower raster),
whereas trials with the reward on the left are shown in red (upper raster).
Left and right trials were randomly intermixed and they are only separated
in the raster for illustration. (C) The percentage of RSC neurons that
encode an explicit navigational cue, such as the light cue, increases
dramatically on the first day of training (solid line). In the blocked
alternation study, in which rats used a win-stay strategy (see Figure 2), the
reward and its location may have served as an important navigational cue
and similarly rapid encoding was seen (fine dashed line). In contrast, the
reward location could not be used as a cue in the light cued T maze study
because the current reward did not indicate the location for the upcoming
reward which randomly switched from one trial to the next. Under these
conditions, the responses did not show a sudden increase early in training
(coarse dashed line). Data are expressed as the increase in the percentage
of neurons at each stage of training relative to the pretraining baseline. (D)
An example neuron that exhibited significant responses to three separate
task events is shown in the form of a peri-event time histogram aligned to
receipt of the reward (Time 0). Additional events are indicated by arrows
(S � trial start, L � light onset and R � reward). RSC � retrosplenial
cortex. See the online article for the color version of this figure. Adapted
from “Retrosplenial Cortical Neurons Encode Navigational Cues, Trajec-
tories and Reward Locations During Goal Directed Navigation” by L. C.
Vedder, A. M. P. Miller, M. Harrison, & D. M. Smith, 2017, Cerebral
Cortex, 27, pp. 3716, 3717. Copyright 2017 by Oxford University Press.
Adapted with permission. See the online article for the color version of this
figure.
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However, some important questions remain. Several findings
suggest that the temporal characteristics of RSC involvement may
be quite important, but they remain poorly understood. Findings
from the discriminative avoidance model suggest that RSC in-
volvement is limited to the late stages of learning, after subjects
reach asymptotic performance, and preliminary data from our
laboratory suggest a similar late-stage impairment in spatial alter-
nation (Miller & Smith, 2012). Selective involvement in asymp-
totic performance is consistent with an RSC role in consolidation
of long-term memories, as several findings have suggested (Cow-
ansage et al., 2014; Czajkowski et al., 2014; Freeman & Gabriel,
1999; Katche et al., 2013). However, we have also seen that some
RSC neural responses emerge at the very earliest stages of learning
(e.g., Figure 3), suggesting a role in rapidly identifying and en-
coding important cues. Even in the discriminative avoidance model,
in which overall RSC responses tended to develop slowly over the
course of learning, some RSC cortical layers and their interconnected
anterior thalamic nuclei exhibited rapidly developing plasticity (Ga-
briel & Orona, 1982). Similarly, mixed fast and slow responses were
seen in our cued spatial tasks (Figure 4C). Another unresolved issue
is that RSC responses appear to be driven by the predictive relation-
ship with reinforcement and the need for a behavioral response in
many tasks. However, sensory preconditioning studies convincingly
demonstrate an RSC role in encoding neutral cues that have no
reinforcement-predictive value at the time of encoding, and the RSC
role in contextual memory, in which the association of contextual
stimuli occurs spontaneously without the need for reinforcement, is
well established.

These two apparent contradictions, rapid versus slow engage-
ment and reinforcement-predictive versus neutral cue processing,

may be related to each other. Rapid responses may be driven by
reinforcement contingencies, whereas slow responses might reflect
the accumulation and consolidation of reliable regularities in the
environment that do not involve explicit reinforcement. If so, this
suggests a dual role of the RSC that is reflective of the fact that the
RSC is both an input structure that carries important sensory
information to other limbic memory regions such as the hippocam-
pus (Cooper & Mizumori, 2001) and a likely target for the con-
solidation of hippocampal-dependent memories (Cowansage et al.,
2014; Czajkowski et al., 2014; Katche et al., 2013). Initially, the
RSC may rapidly identify and encode cues that have clear rein-
forcement contingencies and pass this information to the hip-
pocampus (Figure 5), in which such contingencies have been
shown to influence hippocampal representations (Smith & Mizu-
mori, 2006; Yeshenko, Guazzelli, & Mizumori, 2004). In contrast,
the processing of neutral cues may reflect the slower accumulation
and consolidation of neutral stimulus–stimulus associations such
as those that define contexts. A comprehensive account of the RSC
contribution to memory will need to account for these temporal
characteristics as well as the factors that drive the encoding of
various kinds of sensory cues.
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