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Placing Memories in Context: Hippocampal Representations
Promote Retrieval of Appropriate Memories

David A. Bulkin,'* L. Matthew Law,*® and David M. Smith*

ABSTRACT:  Returning to a familiar context triggers retrieval of rele-
vant memories, making memories from other contexts less likely to
intrude and cause interference. We investigated the physiology that
underlies the use of context to prevent interference by recording hippo-
campal neurons while rats learned two conflicting sets of discrimination
problems, either in the same context or in two distinct contexts. Rats
that learned the conflicting problem sets in the same context maintained
similar neural representations, and performed poorly because conflicting
memories interfered with new learning. In contrast, rats that learned in
different contexts formed distinct ensemble representations and per-
formed significantly better. We also measured trial-to-trial variation in
representations and found that hippocampal activity was directly linked
with performance: on trials where an old representation was active, rats
were far more likely to make errors. These results show that the forma-
tion of distinct hippocampal representations is critical for contextually
appropriate memory retrieval. © 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Context is a fundamental organizing feature of memory. Information is

context; interference; memory

best remembered when subjects are tested where they learned (Godden
and Baddeley, 1975; Balsam and Tomie, 1985; Smith, 1988), a phenom-
enon so integral to memory that merely providing the instruction to think
about the learning context is sufficient to improve recall (Smith, 1979).
Context has a particularly important role in mitigating mnemonic inter-
ference (Bouton, 1993; Smith, 1988; Smith and Vela, 2001). Subjects that
learn two lists of word associations or nonsense syllables experience less
interference (i.e., show better recall) when the items are learned in distinct
environments than when both lists are learned in the same environment
(Bilodeau and Schlosberg, 1951; Greenspoon and Ranyard, 1957; Dallett
and Wilcox, 1968; Watts and Royer, 1969).
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The neural basis of the link between context and
memory almost certainly involves the hippocampus
(for review see: Nadel, 2008; Smith, 2008). Context
specificity of various kinds of memories is disrupted
following lesions of the hippocampus (Kim and Fan-
selow, 1992; Phillips and LeDoux, 1992; Eacott and
Norman, 2004; Smith and Mizumori, 2006a), and an
intact hippocampus is critical for the use of context to
overcome interference (Butterly et al., 2012). The
underlying mechanism seems to involve hippocampal
place cells, which respond based on the spatial posi-
tion that an animal occupies (O’Keefe and Dostrov-
sky, 1971). These neurons alter their firing properties
following a change in context (or “remap”; for review,
see: Colgin et al., 2008), and, thus, provide a popula-
tion representation that is unique to each context.

Two important developments in the study of hippocam-
pal neurophysiology raise questions about the mechanics of
hippocampal context representations. First, is the uncover-
ing of a broad spectrum of nonspatial features that govern
hippocampal activity. Indeed, O’Keefe and Dostrovsky’s
initial report of place cells (1971) noted many neurons that
responded to a variety of (non-spatial) behavioral factors.
Since then, systematic study has indicated a remarkably
rich array of tuning properties of hippocampal neurons
(e.g., Eichenbaum et al., 1987; Wood et al., 1999; Pastal-
kova et al., 2008; Muzzio et al., 2009). Second, recent stud-
ies have demonstrated that neural activity is exquisitely
patterned across ensembles of hippocampal neurons (e.g.,
Dupret et al., 2013; Jezek et al., 2011; Kelemen and Fen-
ton, 2010) and the clear implication is that critical informa-
tion is contained in a population code. Ensemble spatial
activity seems to remap all at once following a contextual
manipulation, providing a statistically independent repre-
sentation that is ideal for associating with context-specific
memories (Smith and Bulkin, 2014).

Does non-spatial activity show a similar type of
remapping? And how does the ensemble code support
learning and memory? In the present study we trained
rats on a task designed to induce proactive interference.
Rats learned two sets of conflicting odor discrimination
problems, either in the same context or in two distinct
contexts. In this task, just like in tasks in which human
subjects learn lists of words, rats trained on the new
odor problems in a new context are better equipped to
resolve interference. Our previous work has shown that
rats learning these two sets in two distinct contexts suffer
less interference, and so make fewer errors, than rats
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learning both sets in the same context (Butterly et al., 2012; Law
and Smith, 2012).

There is an extensive literature on hippocampal remapping.
Large scale changes in the environmental context cause a com-
plete orthogonalization of activity patterns (i.e., global remap-
ping; Leutgeb et al., 2005), resulting in unique hippocampal
firing patterns for each context the subject encounters (Alme
et al., 2014). However, although remapping is ubiquitous and
has been exhaustively described (e.g., Muller and Kubie, 1987;
Lever et al., 2002; Wills et al.,, 2005; Leutgeb et al., 2007;
Kelemen and Fenton, 2010; Jezek et al., 2011; for review see:
Colgin et al., 2008), most studies have not directly examined
whether remapping is consequential for memory retrieval. Pre-
vious studies that have examined remapping and spatial behav-
ior have not found a clear relationship (Cooper and Mizumori,
2001; Jeffery et al., 2003). We have proposed that ensemble
representations of context could become associated with appro-
priate memories and behaviors such that returning to a familiar
context triggers retrieval of relevant memories (Smith and Bul-
kin, 2014). Consistent with this hypothesis, recent studies have
shown that optogenetic reactivation of a hippocampal represen-
tation is sufficient to evoke contextual fear responses (Liu
et al., 2012; Ramirez et al.,, 2013). In the present study, we
examined the relationship between endogenous hippocampal
representations and context appropriate behavior.

We quantified the difference in hippocampal activity pat-
terns as rats learned the two conflicting problem sets in the
same context, and compared it with the difference when the
problem sets were learned in different contexts. If distinct rep-
resentations are important for retrieving context appropriate
memories and behaviors, then remapping should be associated
with performance. Individual neurons showed a variety of
response types, including position and event locked activity
and mixtures thereof. Because of the array of responses, the
present study afforded a unique opportunity to examine
context-triggered remapping of spatial and event activity at the
population level. As such, rather than applying a classification
strategy, we subjected all neurons to a series of spatial and
temporal analyses that were agnostic to response type.

Rats that learned new odor-reward associations in a new
context had neural firing that was completely different in the
two contexts, while those that learned new associations in the
old context showed persistent activity patterns. This remapping
yielded an ensemble representation that was statistically inde-
pendent in the new context, a result that was apparent in both
position- and event-locked analyses. Moreover, the trial-to-trial
variance in representational similarity was predictive of behav-
joral performance: rats were least likely to make errors when
hippocampal activity was most distinct. Taken together, these
results show how hippocampal ensembles work to provide a
new and statistically independent code, across a heterogeneity
of constituent neuronal response types. This code, a context
representation, can prime context-appropriate memories and
prevent interference from memories that would be appropriate
in other contexts.
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MATERIALS AND METHODS

Training Procedures and Apparatus

The training procedure followed our previously reported
methods used to probe the use of context to prevent interference
in rats (Butterly et al., 2012; Law and Smith, 2012; Peters et al.,
2013). Seven adult male Long—Evans rats were trained on a task
designed to induce proactive interference. Rats learned two sets
of eight odor discriminaton problems, either in the same envi-
ronmental context or in two different contexts. Rats learned the
first set until they reached asymptotic performance (>90% cor-
rect on two consecutive sessions) and then began learning the
second set. Three of the rats learned the second set in a different
context and four learned the second set in the same context. All
procedures complied with the guidelines established by the
Cornell University Animal Care and Use Committee.

Training took place in wooden chambers with a 60 cm by
45 cm floor and a removable divider (Fig. 1B). One side of
the chamber served as an intertrial waiting area, the other con-
tained two plastic cup holders for the presentation of stimuli.
Contexts were differentiated by a number of multimodal cues:
the enclosure’s color and substrate (light wood or a black rub-
ber lining), the surrounding walls (black painted walls or white
blinds), the frequency content of a 65 dB continuous back-
ground masking noise (white noise or pink noise), and the
ambient odor left by wiping out the chamber with baby wipes
prior to each training session (unscented or scented, Rite Aid,
Inc.). Additionally, the rats were transported in covered cages
to the experimental area by different methods (via a cart or
carried by hand).

Trials began when the experimenter lifted the divider and
the rat entered the odor presentation area. The rat was allowed
to approach the cups and search for the reward. Subsequently,
the rat was returned to the intertrial waiting area and the
divider was replaced while the experimenter prepared the cups
for the next trial. Trials were marked as errors if the rat dug in
the unbaited cup, any displacement of bedding was considered
a digging response. Training sessions continued until the rat
reached a behavioral criterion of 90% correct choices, and a
minimum of four training sessions had elapsed. All rats
achieved criterion performance by the fifth day of training.
Sessions were generally conducted daily; however, 1-3 days
without training were interleaved in order to maximize the
opportunity to obtain large and stable neuronal populations by
the time of the final training session on the problem set.

Once the rat reached the performance criterion, training
began on a second problem set (Fig. 1A; Supporting Informa-
tion Fig. 1A). This set contained eight odors from the first
set, with their predictive values reversed, paired with eight
novel odors. To prevent rats from adopting a strategy based
on odor novelty, half of the new odors were rewarded and the
other half were unrewarded. Training on the second set con-
tinued for five sessions regardless of performance. After the
last set rats were given a pellet detection test in which two

Hippocampus
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FIGURE 1. Proactive interference task. (A) Rats were trained on  one set to the next (Ag,a and Biyigais shaded region in A). (B) A dia-

a proactive interference task in which they learned two sets of odor
discrimination problems. They first learned to discriminate within
eight pairs of odors over the course of four to five sessions, until they
reached a criterion performance level of 90% correct choices. Next
they learned a new set of problems either in the same environmental
context (SC; blue) or in a different environmental context (DC; red).
Recordings were taken throughout training, but analyses focused on
a set of neurons that were stably recorded as the rats switched from

cups containing identical odors were presented, but only one
was baited (32 trials). If the rats could detect the sucrose pel-
lets, they would be expected to perform above chance. As
with our previous studies (Butterly et al., 2012; Law and
Smith, 2012; Peters et al., 2013), none of the rats performed
above chance.

A third, neutral context (a 1-m square PVC box, with a
unique configuration of context cues in which the rats foraged
for chocolate sprinkles), was used to probe for activity as elec-
trodes were lowered into hippocampus before training began.
Recordings were also taken in this context after each session
and were used to aid spike sorting, specifically to identify cells
that were silent during the main experiment on one of the two
critical sessions.

Surgery and Electrophysiological Procedures

Moveable electrode arrays containing 16 insulated platinum
iridium tetrodes (composed of four 17 pm wires; California
Fine Wire, Grover Beach, CA) were implanted bilaterally just
above the dorsal hippocampus (3.5 mm posterior and 2.5 mm

Hippocampus

gram of the training apparatus. An inter-trial waiting area (bottom)
was separated from the discrimination training area (top) using a
removable divider (horizontal broken line). Rats that learned the
new set in the new context performed better than rats that learned in
the same context. (C) average performance on the final session of Set
A and on each session of Set B. Error bars indicate SEM across rats.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

lateral to bregma). Following recovery from surgery, tetrodes
were slowly lowered into the CAl cell layer and rats began
training on the first set of odors. Because the focus of the study
was on changes in activity across two critical sessions (Agna
and Bi,inas Fig. 1A), tetrodes were advanced over initial train-
ing on the first odor set but then left in place at least 24 hours
before the final recording session on the first odor set (Ag,) in
order to maintain recordings as the rats began the new set (By;.
dal)- Multiunit recordings were sorted into constituent units
using standard clustering techniques and were matched across
sessions by applying cluster boundaries from one session to the
other with manual adjustments to account for drift (Mankin
et al., 2012).

Data Analysis

All analyses were performed using custom software written
in the numerical computing environment Matlab (Mathworks,
Natick, MA). Analyses were restricted to cells with an average
firing rate of less than 3 spikes/second across the session (i.e.,
discarding any putative interneurons). Separate analyses with
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the inclusion of these neurons, or with higher thresholds for
firing rate did not qualitatively change any of the differences
between SC and DC conditions.

Spatial firing maps were constructed by calculating firing
rates in 4.5-cm square bins spanning the apparatus. The data
were smoothed by convolution with a 4 bin Gaussian kernel
with unity sum. Spatial bins that contained less than one sec-
ond of occupancy (following smoothing) were discarded. For
display purposes only, firing rate maps were interpolated line-
arly with three points between each sampled data value.

Peri-event time histograms (PETHs) were calculated by bin-
ning and averaging the data in 100 ms bins centered on three
events during the trial: the start and end of the trial (defined
by the moment the rat crossed an imaginary line at the posi-
tion of the removable divider) and odor sampling (defined by
the moment the rat’s nose was directly above the odor cup,
scored manually using video recordings of the experiment).
Odor sampling times were identified by manual flagging of
raw video data sampled at 30 fps. Trials lasting longer than 30
seconds were discarded from all ensemble and event related
analyses, however performance was still included for these trials
(these trials always contained errors, and the errors were always
made within the first 30 seconds of the trial). For display only,
the data shown in Figures 3C and D were smoothed with a 1
second Gaussian window, and normalized to z units.

Pearson correlations were computed between the spatial fir-
ing maps across sessions, using only those bins that were visited
in both contexts. For units that displayed spatial sensitivity in
both sessions we computed the center of mass (COM) of spa-
tial firing rate as the weighted average of the binned position
of the rat, with weights determined by binned firing rate. For a
unit to be considered spatially sensitive it had to have a spatial
firing map with a contiguous region (i.e., place field) with at
least twice the firing rate within the field as outside of the field,
a field area less than 30% of the apparatus, and at least 100
total spikes within the field. To estimate chance levels for shifts
in COM, we computed the average pairwise distance between
COM for different neurons.

Analogous correlation and COM analyses were applied to
event-related firing. PETH correlations were computed between
sessions for the trial start and trial end aligned PETHs, separately
for the two events. The event COM analysis was performed by
fitting a Gaussian curve to each PETH using a nonlinear least-
squares approach (Matlab Curve Fitting Toolbox):

F)=4e () +4

The function f{z) describes the firing rate as a function of
time relative to the event (¢). In order to ensure identification
of a (potential) peak near the event time, the parameter A,
which indicates the amplitude of the Gaussian, was restricted
to positive values, and the parameter pt (which marks the peak
time of the Gaussian) was restricted to the range of the histo-
gram (i.e., =2 seconds). Initial values for these coefficients
were taken from the amplitude and time of maximum of the
average binned firing rates. The parameters ¢ and d, which
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specify the width and offset of the curve, were unrestricted.
The difference in the parameter u across sessions was taken as
the shift in event COM, the 95% confidence interval on this
parameter is plotted in Supporting Information Figure 5B.

To calculate normalized information scores, an information
score was assessed as described in (Markus et al., 1994):

R R,

For spatial information, P; was the probability for occupancy
of bin i, R was the mean firing rate for bin i, and R was the
overall mean firing rate. For event related information content,
P; was fixed at the reciprocal of the number of trials (each bin
of the PETH was “visited” the same number of times), values
for R and R were calculated in the same way as for spatial
data except that they were calculated using temporal bins (=2
seconds around each event, 100 ms bins) rather than spatial
bins. In both the spatial and temporal analyses, normalized val-
ues were calculated using an iterative process (Markus et al.,
1994): a distribution of 500 pseudo information values was
calculated by randomly offsetting spike times using uniform
random values ranging from 5 to 100 seconds. The values used
for comparison between sessions were z transformed using this
distribution (i.e., the number of standard deviations from the
mean of the distribution of pseudo information values).

Classification was performed using linear discriminant analy-
sis with uniform priors. For epoch classification each trial was
divided into four time windows: a 1-second period preceding
the trial, the period between the start of the trial and the
arrival at the first cup, the following 400 ms, and a period
extending until 400 ms after the arrival at the final cup (Sup-
porting Information Fig. 6). Firing rates were divided into 100
ms bins, and each bin was labeled with the epoch. An analo-
gous approach was applied to spatial classification, dividing the
apparatus into four quadrants (to match the number of epochs
in the event related classification). Data were divided into 1-
second bins, and each bin was labeled with the quadrant iden-
tity. Bins in which the rat occupied multiple quadrants were
discarded from analysis.

Accuracy of the event locked classifiers was tested by creating
10,000 subsets of the data, each time selecting half of the Set
A trials to train the classifier, and the remaining trials as well
as half of the Set B trials to test the classifier. Using subsets
allowed us to prevent spuriously high success rates due to over-
fitting and to estimate confidence intervals on performance.
Taking randomly selected trials to form subsets rather than
individual bins allowed us to avoid spuriously high success
rates due to the high dependency of firing rate from one bin
to the next. To select training and testing subsets for the spatial
classifiers, each session was divided into 100 evenly distributed
blocks and, just like with the event locked classifiers, half of
the blocks were used to train the classifier and the remaining
half (as well as half of the Set B blocks) were used to measure
performance. The performance of the classifier was considered
above chance if 95% of the distribution of classifier hit rates

Hippocampus
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were above a chance value (taken as the reciprocal of the num-
ber of classes).

Similarity between representations was calculated using a dis-
tance index (MDI):

(X¥—f)S" ' (3—i)

MDI(¥)=

For each trial, the average firing rate of each unit was tabu-
lated to form a population vector for that trial. The covariance
across Ag,a population vectors was calculated. Next, the dis-
tance to the mean Ag,, population vector (f) was calculated
for each Bia trial (¥), in units of Ag,, covariance (S). This
Mahalanobis distance (i.e., squared distance normalized by
covariance) was then additionally normalized by the number of
units (7) in the sample (for comparison across rats with differ-
ent sample sizes).

Histology

Following the experiment the rats were deeply anesthetized
and perfused transcardially with 4% paraformaldehyde. Their
brains were removed, sectioned at 40 pm, mounted on slides,
and stained with cresyl violet. The position of the electrodes
was confirmed to be in the cell layer of CAl in dorsal

hippocampus.

RESULTS

We trained seven rats on a task designed to induce proactive
interference. Rats sequentially learned two conflicting sets of
odor discrimination problems. On each trial, a removable
divider was lifted, and rats encountered a pair of cups filled
with odorized digging medium. Rats quickly learned that one
odor in each pair was associated with a reward, and dug in the
appropriate cup for a buried sucrose pellet, rejecting the
unbaited cup. Once the rats reached asymprotic performance
on the first set of odor problems, training commenced on a
new set, which contained some of the odor cues from the first
set with their predictive value reversed (Fig. 1A; Supporting
Information Fig. 1A). Four rats learned the new set in the
same environment as the first (same context, SC), and three
rats learned in a new environment (different context, DC).
Rats in the SC group showed a higher error rate on the first
session of training on the second set of odor problems (Fig.
1C; #sy=5.05, P<0.01), indicating that they were more sus-
ceptible to interference. Thus, learning the two problem sets in
different contexts provided a significant advantage. Although
the magnitude of the performance enhancement seen in the
DC rats was modest, it persisted through several training ses-
sions and was remarkably consistent. In the present study, every
DC rat performed better than every SC rat, and similarly
enhanced performance has been reported in four previous stud-

Hippocampus

ies using this task (Butterly et al., 2012; Law and Smith, 2012;
Luu et al., 2012; Peters et al., 2013).

To investigate the nature of hippocampal representations and
their utility in interference prevention, we recorded the activity
of 125 dorsal CAl neurons (99 putative pyramidal units
included for analysis, see methods) as rats switched from the
well learned initial problem set to the new, conflicting problem
set. We then compared neuronal ensemble activity in the SC
and DC conditions. Specifically, we focused on the final session
of the first problem set and the first learning session of the sec-
ond problem set (Agna and Bigiga, respectively; the shaded
region in Fig. 1A). Using a variety of analyses, we found that
ensembles of neurons recorded from DC rats formed a statisti-
cally independent representation on Bj;;, while neurons in SC
rats continued to fire as they did in Ag,;.

Individual neurons showed a variety of response profiles.
While many units showed clear spatial sensitivity, others
showed discharge patterns that were tightly locked to impor-
tant temporal events that occurred during the trial, and many
were driven by a combination of spatial and event-related fac-
tors. Event responsive neurons in the hippocampus have been
described previously (Wood et al., 2000), and event responses
seem to undergo remapping comparable to spatial responses
(Smith and Mizumori, 2006b). However, many experiments do
not have salient events for neurons to respond to (e.g., open
field studies), while in others (e.g., maze studies) the design
precludes disentanglement of spatial and event-related responses
because important task events always occur at the same loca-
tion. This can make a response appear locked to space when it
is actually governed by temporal factors (Kraus et al., 2013).
Because both spatial and temporal factors influence activity,
and the context manipulation led to changes in both domains,
we conducted parallel analyses wherein we binned the data
based on spatial location and two important task events, the
start and end of the trials. We first treated all of the neurons as
spatial, and quantified the extent of change across the critical
two sessions. Then, we treated all of the neurons as event-
responsive, and applied an analogous set of analyses. This
approach allowed us to consider the remapping of neuronal
activity while remaining agnostic to the factors that shaped the
responses of each individual neuron.

Remapping in a Spatial Framework

When the new learning took place in the same context, spa-
tial response patterns persisted (e.g., Fig. 2A; Supporting Infor-
mation Fig. 2A). Neurons in DC rats, however, showed a
complete reorganization of activity (Fig. 2B; Supporting Infor-
mation Fig. 2B). The neuron depicted in Figure 2B showed
clear spatial tuning but its peak activity shifted to a different
location in Bi,ji,. During Ag,,, this neuron fired preferentally
on the left side of the apparatus, just behind the divider (indi-
cated by the gray broken line). When the rat entered a new
context, in B, firing was mainly on the right hand side of
the apparatus, far from the divider. Other neurons showed a
binary response pattern, with vigorous spatial firing in one
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FIGURE 2.  Remapping in a spatial framework. A and B show
waveforms (top; the four colors indicate the waveform recorded on the
four wires of the tetrode) and firing rate as a function of space (bottom)
for example units on the final session of Set A (A, left) and the initial
session of Set B (Biy;gias; right). The unit depicted in A was recorded from
a rat in the SC group, and showed elevated activity in the same location
in both sessions, whereas the unit depicted in B was recorded from a rat
in the DC group, and fired in different locations in the two sessions.
The gray overlay on the spatial firing map in A indicates a diagram of
the apparatus. (C) Spatial firing rates were well correlated in SC rats but
not DC rats. (D) Remapping was also evidenced by a shift in center of
mass of spatial firing (COM) across the two sessions in DC rats where

session, but virtually no activity in the other (e.g., see Support-
ing Information Fig. 2B). In contrast to the remapping seen in
DC rats, spatial tuning in SC rats was unchanged across the
sessions. The spatial firing maps in Figure 2A and Supporting
Information Figure 2A show tuning patterns that were stable,
these neurons fired in the same locations during both sessions.
Interestingly, while neurons recorded from SC rats did not
change their preferred firing locations, many cells showed large
differences in firing rate (i.e., rate remapping). This may have
occurred in response to the new problem set or merely the pas-
sage of time (see Mankin et al., 2012).

We quantified the extent of change between Ag,, and Biyisal
in neurons recorded from SC and DC rats. First we compared
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the distance between COM was not different from a chance COM shift,
which was estimated by calculating the average COM distance between
neurons (broken line). Note that while low values in C and E indicate
dissimilar activity patterns, low distances between COM:s indicate similar
activity (the COM was in the same location). E compares the correlation
between normalized spatial information across the two sessions for SC
and DC rats. The extent to which a neuron exhibited spatial tuning was
related across the two sessions in SC rats: neurons that showed high spa-
tial information in one session were likely to show high spatial informa-
tion in the other. In DC rats, there was no relationship between a given
neuron’s spatial information across sessions. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

the average firing rates in each two-dimensional spatial bin
between the sessions. In the SC condition, the spatial response
patterns of neurons were highly correlated across sessions (Fig.
2C). In the DC condition however, there was no relationship
between the spatially binned activity across the two sessions
(SC compared with DC: 99y = 12.95, P<0.01 X 107" sC
r compared with 0: #4s) =20.62, P<0.01 X 107%"; DC r
compared with 0: 74s) = 1.37, P=0.18).

Low spatial correlation values in DC-rats could arise from
either a change in place field location or the place field could
disappear altogether with the change in environment. To inves-
tigate remapping that was driven by a change in the preferred
firing location, we compared the center of mass of spatial firing

Hippocampus
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FIGURE 3. Remapping in an event locked framework. A and
B show waveforms and PETHs/rasters for example units on the
final session of Set A and the initial session of Set B. The cell
activity depicted in A, recorded from an SC rat, showed a vigorous
response as the rat sampled odors, a response that was present on
both sessions. This neuron showed a response regardless of the
odor, and samples from all 16 odors are included in the raster.
The cell activity depicted in B, recorded from a DC rat, showed a
response at the start of trials, but only on the Biia session.
Below A and B are PETHs/rasters and heatmaps of the same data
plotted to illustrate the differential contributions of spatial loca-
tion and events. In the rasters, the data are aligned on the rats
entry into the apparent place fields at time zero, and sorted from
top to bottom by the relative time of the event in question (odor
sampling in A and trial start in B), which is indicated by the
magenta line. The accompanying histograms indicate firing rate
when the event was within 3 seconds of place field entry (red) or
more than 3 seconds from place field entry (blue, shading indi-
cates SEM). Greater firing for passes through the apparent place
field that coincided with the event suggests that firing is modu-

rates (COM; Leutgeb et al., 2005; Mehta et al., 1997) of neu-
rons across sessions. To be considered for this analysis, cells
had to show spatially restricted activity in both sessions (i.e., a
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lated by the occurrence of the event and not solely by spatial loca-
tion. In contrast, firing that consistently occurs on entry to the
apparent place field regardless of the temporal proximity of the
event suggests that firing is modulated primarily by spatial loca-
tion (e.g., red and blue lines are similar in the lower left histogram
in plot B). C and D show ensemble activity from all SC (C) and
DC (D) units, each row shows the normalized PETH of an indi-
vidual neuron in a *2 s period surrounding the trial start (left)
and trial end (right). The rows are sorted based on the time of
peak firing relative to the trial start and trial end during Ag,, and
the same order is maintained for the data of Bj,;;.. E-G show
remapping of event-locked firing using analogous analyses to those
presented in Figures 2C-E. PETHs were well correlated in SC, but
not DC rats (E), and showed a shift in the PETH COM in DC,
but not SC rats (F). Note that (as in Fig. 2) low values in F indi-
cate a response that was consistent across the two sessions. The
extent to which a neuron exhibited event tuning was related across
the two sessions in SC rats, while in DC rats there was no such
relationship G. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

contiguous region with at least twice the firing rate within the
field as outside of the field, with an area <30% of the appara-
tus, and at least 100 total spikes within the field; 39 units in
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SC rats, 24 units in DC rats). Importantly, we did not exclude
apparent place fields that may have arisen due to event related
firing which happened to coincide with a particular location
(e.g., odor driven responses occurring at the cup location, see
below). The distance in space between COMs from Ag,, to
Biiia was larger in DC rats than SC racs (Fig. 2Dj
t1) = 6.70, P<0.01 X 10~). Furthermore, the COM shifts
in rats in the DC condition were as large as the average dis-
tance between the place fields of two different neurons (one
sample #test; DC f4=0.92, P=0.37; SC ¢35 =17.51,
P<0.01 X 10~Y). In short, in DC rats, the preferred firing
location of a neuron in one context was completely unrelated
to the preferred location in the other context.

To quantify the extent to which neurons changed their
degree of spatial sensitivity we computed a spatial information
score for each unit/session and compared these values for indi-
vidual units across sessions. This approach asks whether neu-
rons that had responses which were tightly linked with space in
Apna continued to have strong spatial sensitivity in Biyia. Spa-
tial information was calculated based on the spatially binned
firing rates, and then z-transformed using the methods
described in (Markus et al., 1994). Neurons recorded from SC
rats showed similar spatial information scores across sessions
(Fig. 2E; r compared with 0: £z = 13.42, P<0.001): those
units that displayed highly spatially sensitive responses during
Apna continued to display highly sensitive responses in Bjpal,
and neurons that were uninformative about space remained as
such. The DC rats did not show a relationship between spatial
information scores of neurons across contexts (Fig. 2E; r com-
pared with 0: 75 =2.27, P=0.11). In other words, neurons
that were spatially tuned in one context were equally likely to
be tuned or untuned in the other.

Remapping in an Event Locked Framework

Many neurons showed responses linked to temporal events
that occurred during the trial, and these responses showed a
similar pattern of changes as the spatial responses described
above. The neuron depicted in Figure 3A, recorded from an
SC rat, showed stable responses time-locked to odor sampling
in both sessions. In contrast, the activity pattern shown in Fig-
ure 3B, recorded from a DC rat, indicated event-locked firing
in only one of the two sessions (Bj;a). Distinguishing these
responses as event-driven, rather than position-driven, was chal-
lenging because the rat visited a restricted set of locations at
the times when events occurred. For instance, neurons that
fired as the rats sampled odors (like the cell depicted in Fig.
3A) formed an apparent place field around the location of the
cups containing odor stimuli. Importantly, the activity was not
purely determined by the location of the rat. To confirm the
specificity of the cells we defined a place field based on the
apparent spatial sensitivity, We then constructed raster plots
(shown in the insets below Figs. 3A,B) using each journey the
rat took through the field. We finally sorted the rasters based
on the temporal proximity of the event in question. Often
(e.g., Fig. 3; additional examples in Supporting Information
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Fig. 4), the rasters showed that activity was more closely locked
to the timing of events (magenta line) than the entry into the
place field (time 0). This stands in contrast to the pattern seen
in the more purely spatial response shown in the left panel
below Figure 3B: this cell increased its activity as the rat
entered the place field, regardless of the temporal proximity of
the trial start.

To investigate changes in an event locked frame of reference
we constructed peri-event time histograms (PETHs) by binning
unit response data aligned on the start and end of each trial.
These two events were selected because they were highly salient
(the divider was removed and replaced at the start and end, see
Fig. 1), we could precisely identify them from the video record
(when the rat crossed into and out of the odor sampling area),
and because other key events reliably occurred in close tempo-
ral proximity. For example, because the rats immediately
approached the cups, initial odor sampling always occurred
shortly after trial start. Similarly, because the rats returned to
the ITT side of the box after the trial, the rat always obtained
the reward just before the trial end. Thus, by centering our
analyses on these two events we were able to incorporate sev-
eral key events known to affect hippocampal firing (e.g., cup
approach, odor sampling, reward, etc.; see Eichenbaum et al.,
1987; Smith and Mizumori, 2006b) all within the same tem-
poral reference frame. Figures 3C,D show ensemble firing rates
(the average PETH of each neuron), on both sessions, sorted
based on the time of peak activity during Ag,,. When rats
learned the new problem set in the same context (Fig. 3C) the
pattern was largely preserved: neurons that showed elevated
activity before/after the start/end of trials continued to show
elevated activity at similar times. Neurons recorded from DC
rats (Fig. 3D), however, changed their event-related firing.
When the PETHs were sorted by peak firing time on Ag,,
and the same sorting order applied to Bi,ia, the temporal
structure was completely abolished.

Similar to the position-locked analyses, which included
apparent place sensitivity that likely arose from event sensitive
firing, the event locked analyses included apparent event
responses that likely arose from spatial firing. For instance, a
cell with a place field near the divider (like the cell depicted in
Fig. 2A) would show an apparent event response as the rat
passed through the field around the start of the trials, and
again at the end of the trials. Indeed, this sort of activity can
be seen in Figure 3C: several of the rows show firing that is
symmetrical around the midline of the plot. By applying both
sets of analyses to all cells, ignoring the ‘cause’ of firing, we
were able to measure remapping without categorizing cells
based on the factors shaping their receptive fields.

To quantify the extent to which event-locked activity
changed across the critical sessions in the two groups, we
applied an analogous set of analyses to those which we used
for space, but anchored to the timing of events rather than the
location of the rats. We first applied a binwise correlation,
analogous to the spadally binned correlation shown in Figure
2C. For each neuron we compared the average activity in each
of the twenty 100ms bins surrounding the start and end of

Hippocampus



966 BULKIN ET AL.

trials across the two critical sessions (Fig. 3E). Event related fir-
ing was well correlated in neurons recorded from SC rats (one
sample t-test compared with 0; trial start: #4s) = 8.18, < 0.01
X 107; trial end: tus = 9.22, P<0.01 X 10~ %) and showed
no relationship in DC rats (trial start: 535 = 0.16, P =0.87;
trial end: #4s)=0.30, P=0.76). These data indicate that
when neurons were considered in an event-locked reference
frame (as in the spatial frame), the ensemble as a whole under-
went a complete reorganization of activity for rats that learned
the new odor set in a new context.

Just as cells with spatially tuned responses could remap
either by changing the location of peak activity or the degree
to which they were tuned to space, event sensitive neurons
could change either their peak activity time (with respect to an
event) or the degree to which they showed event locked activity
altogether. As such, we investigated the extent to which units
shifted the event-related firing time, using an analysis that was
analogous to the spatial COM shift shown in Figure 2D. We
defined a PETH COM by fitting Gaussian curves to the
PETH data (aligned on trial start and end, *2 seconds, 100
ms bins), and identifying the time of the peak (Supporting
Information Fig. 5). To be included in the analysis, both ses-
sions had to be best fit by a Gaussian that had positive ampli-
tude (i.e., a peak in response). The shift in peak times was
smaller in SC rats than DC rats (Fig. 3F; trial start:
tey = 4.09, P<0.001, trial end: 75 = 4.60, P<0.0001). As
with the spatial COM, the PETH peak shifts for neurons
recorded from rats trained in the DC condition were as large
as the average shift between the peaks of two different
randomly selected neurons (one sample #test, trial start:
toe) = 0.37, P=0.71; wial end: #3zy=1.02, P=0.32). In
contrast, COM shifts for rats in the SC condition were signifi-
cantly smaller than chance (trial start: %35y =11.57, P<0.01
X 10~ =7.30, P<0.01 X 107°).

For each neuron we calculated an event related information

%; trial end: 734

score for the trial start and trial end using a method analogous
to the approach used for spatial information (i.e., considering
how informative firing was about the time of an event, rather
than location). This approach asks whether neurons that have
responses which are tightly linked with an event in one session
continue to be associated with an event in the next. Similar to
spatial information scores, the information about events was
highly correlated across sessions in neurons recorded from SC
rats (Fig. 3G; r compared with 0; trial start: #3) = 32.55,
P <0.0001; erial end: £z = 11.32, P<0.01) but not DC rats
(r compared with 0; trial start: 75y = 0.32, P=0.78; trial end:
t) = 1.15, P=10.37). Thus, neurons that had firing that was
informative about proximal events retained this information
in SC rats, but in DC rats the degree event-related information
in one session was unrelated to the degree of event-related
information in the other.

Ensemble Predictions of Behavior

The above analyses showed that both spatial and event repre-
sentations persisted in SC rats and underwent complete remap-
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FIGURE 4. Population vector prediction of location and tem-

poral epoch within and across sessions. Linear discriminant analy-
sis was used to classify neural ensemble responses associated with
one of four spatial quadrants or one of four temporal epochs (an
example is illustrated in Supporting Information Fig. 6). A and B
show the accuracy of the spatial and epoch classifiers, respectively,
when trained on half of the data in Ag,,;, and then tested on the
remainder (orange bars), and when the same classifiers were tested
on Bi,iia (green bars). To measure the performance of the classi-
fiers, training and testing subsets were selected randomly using an
iterative process (see methods). Heights of the bars indicate the
median, and error bars range from 5% to 95%, of the iterated dis-
tribution. Error bars not overlapping with 0.25 (horizontal broken
line) indicate that the classifier performed above chance. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

ping in DC rats. However, recent work has highlighted just how
much of the ensemble signal is either inaccessible, or obscured,
when measured at the level of individual units (e.g., Kelemen and
Fenton, 2010; Jezek et al., 2011; Dupret et al., 2013). We next
compared ensembles as a whole, on the same critical days as the
single unit analyses, using metrics sensitive to interactions between
neurons (i.e., the covariance of the ensemble). Ensembles con-
sisted of all of the neurons recorded from each rat (number of
neurons from SC rats: 7, 10, 15, 19; number of neurons from
DC rats: 16, 15, 17).

We began with a discriminant classification approach to
predict location and temporal epoch relative to task events
using each rat’s neural ensemble responses (Fig. 4, see also
Supporting Information Fig. 6). We first divided the appara-
tus into four spatial quadrants, and in a corresponding man-
ner divided the trials into four epochs surrounding the time
of the events. We binned unit activity to form population
vectors containing the firing rates of simultaneously recorded
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FIGURE 5. Ensemble distances between Agn, and By trial
representations. Dissimilarity, quantified as the distance between
each Bi,is. population vector (i.e., the average firing rate of each
neuron throughout entire trials) and the set of Ag,, population
vectors was calculated using Mahalanobis distance, and then nor-
malized to the number of neurons to yield a distance index
(MDI). (A) Ensembles showed far greater dissimilarity in DC rats
(red bar) than SC rats (blue bar). Error bars indicate SEM across
rats. (B) MDI for each trial in an example DC rat (top) and SC
rat (bottom). Correct trials are indicated by magenta bars and
error trials in cyan. On trials with a high MDI, the rat rarely

neurons, labeled these vectors with the associated quadrant/
epoch, and then trained linear discriminant classifiers using a
subset of vectors from Ag,,. To avoid errors associated with
overfitting, and to estimate confidence intervals on the per-
formance of the models, we used an iterative approach (see
methods).

When the classifiers were trained and tested using data from
the same session, they generally performed well above chance
(orange bars in Fig. 4). In SC rats, both the spatial (Fig. 4A)
and epoch-based (Fig. 4B) classifiers continued to perform well
when trained using data from Ag,, and tested on the responses
in Biiga. In DC rats, however, the performance of the classi-
fiers fell to chance when applied across sessions. These results
indicate that the population codes for space and temporal
epoch persisted in SC rats across sessions, but in DC rats the
code was rendered useless. Note that in Rat SC2 the temporal

30 40 50 60 70 80 90 100
MDI Percentile

made errors. Note that the large difference in the scale of the ordi-
nate: though both rats show the same pattern, the distribution of
MDI values spanned a larger range in DC rats. C shows the aver-
age z-scored MDI across rats (both SC and DC) was lower for
error than correct trials. Error bars indicate SEM across rats. D
shows the proportion of correct trials, across rats (both SC and
DC), for each decile of MDI. Each rat was most likely to make an
error when MDI was at the low end of that rat’s distribution. The
red line indicates a linear regression fit to the data # =0.12;
P<0.005). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

epoch classifier performed at chance when tested within Ag,,,
as such it was unsurprising that it continued to perform at
chance when tested across sessions.

To measure the dissimilarity between ensemble representa-
tions on a trial-to-trial basis, we computed whole trial length
population vectors marking the average firing rate of each neu-
ron on each trial. We then computed the distance between
each Biia trial to the average vector for the set of Ag,, trials
using Mahalanobis distance, which was normalized to the
number of neurons in the sample to define a distance index
(MDI). Mahalanobis distance quantifies the distance of an n-
dimensional point (the population vector from a Bja trial)
to the average of a group of points (the vectors from all Agya
trials), scaled by the covariance of the group. This provides a
metric that is sensitive to changes both in global rate as well as
interactions between neurons, and it has been used previously
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for quantifying dissimilarity of ensemble responses (Hyman et al.,
2012; Manns et al., 2007; Sheinberg and Logothetis, 1997).

The average MDI was far greater in DC rats than SC rats
(Fig. 5A; #s)=3.35, P<0.05). The finding that this metric
was sensitive to the remapping of ensemble activity is actually
somewhat surprising: trial durations were long and variable
(mean = 10.0 seconds, SD = 4.5 seconds). Furthermore, the
trajectory of the rat, the specific odors encountered and even
the number of odor sampling events, varied from one trial to
the next. The differential effects of the SC and DC conditions
on hippocampal firing patterns cannot be attributed to large
scale differences in behavior in the two conditions. For exam-
ple, running speed did not differ across groups or across the
switch from Bg,, to Ainita (Supporting Information Fig. 1B).
Nevertheless, the switch from Bg,, to Aipia did cause a large
increase in the error rate and, consequently, an increase in
bouts of odor investigation and digging. However, the number
of errors (and related behaviors) was greatest in the SC condi-
tion where the hippocampal representations were stable and
conversely, the biggest changes in hippocampal representations
were seen in the DC condition where there were significantly
fewer errors. Thus, the changes in hippocampal representations
could not have been driven by these changes in behavior.

Interestingly, in both context conditions, MDI was smaller
on those trials in which rats made errors. Figure 5B shows each
trial’s MDI in a Bjj;a session from a DC rat (top) and SC rat
(bottom). When the MDI was high (i.e., the representation
was most distinct), the rats rarely made errors. When the MDI
was low (i.e., the current representation was more similar to
the old, Ag,. representation), interference dominated and the
rats performed near chance (Figs. 5C,D). Interestingly, the pre-
cise quantity of representational dissimilarity alone was not suf-
ficient to prevent interference: SC rats showed distributions of
MDI values that were far lower than DC rats. However, when
considering the relative MDI (either using z-transformed data
or percentile division) it was clear that correct performance was
associated with more distinct representations than incorrect
(Figs. 5CD; #4 =3.38, P<0.05). Taken
together, these results show how the remapping of hippocampal

performance

ensemble representations provides a context signal that can be
used to alleviate the effects of interference.

DISCUSSION

Our results show a complete reorganization of hippocampal
activity patterns following a change in context, and this was
directly linked to subjects’ success in preventing interference. Indi-
vidual neurons showed responses that were tightly linked to the
position of the animal, the timing of critical trial events, or some
combination thereof. However, these neurons changed their
response when the rat entered a new context, resulting in unique
ensemble representations that could be used to identfy the cur-
rent context and distinguish it from other contexts. Interestingly,
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this large scale representational shift was observed regardless of the
specific response type, and both spatial and event locked analyses
indicated statistically independent representations.

The extent of ensemble remapping was predictive of perform-
ance. In SC rats the ensemble activity patterns of Set A persisted
during Set B, the rats were subject to interference and made more
errors. In DC rats a new representation emerged, insulating rats
from interference. As such these rats made fewer errors. Moreover,
in both groups, rats were most likely to make errors on individual
Set B trials that showed ensemble activity similar to Set A pat-
terns. When an old representation was active, the rats were
impeded by interference from the associated memories. These
data provide the first direct link between endogenously generated
patterns of neural activity in the hippocampus and the use of con-
text to prevent interference. The results establish that one function
of complete remapping is to insulate memories from interference
based on the learning context. Whether or not rate remapping of
hippocampal ensembles can also be used to support the separation
of context appropriate memories remains unknown. While we
observed large changes in firing rate in neurons with stable recep-
tive fields recorded from rats in the SC condition, it was unclear
whether these changes were directly related to learning or merely
occurred due to the passage of time (Mankin et al, 2012).
Nonetheless, rats in both groups were best equipped to resolve
interference on trials with the most dissimilar hippocampal repre-
sentations, suggesting that even in an unchanged environment a
distinct representation supports learning of new memories.

Previous experiments using the same proactive interference
task showed that temporary inactivation of the dorsal hippo-
campus severely impaired performance in the DC condition
(Butterly et al., 2012). However, inactivation had no effect on
performance in the SC condition, suggesting that the hippo-
campus was not needed for remembering the odors themselves,
but instead was critical for the ability to use the context to cue
the relevant odor memories. The present results suggest that
the hippocampus allows DC rats to perform better by supply-
ing unique ensemble representations so that memories can be
linked to the context in which they were learned. Consistent
with this idea, recent studies have shown that artificially reacti-
vating hippocampal ensembles associated with a particular con-
text is sufficient to induce a contextually appropriate fear
response (Ramirez et al., 2013). Our results are also consistent
with recent work showing that hippocampal ensemble represen-
tations encode a complex hierarchical set of relationships
among olfactory cues, reward, and location, with a code repre-
senting context at the top of the hierarchy (McKenzie et al.,
2014). Our results demonstrate that these ensemble codes sup-
port the capacity to prime contextually appropriate memories
and behavior, which is particularly useful for mitigating the
effects of interference.

We propose that hippocampal firing patterns influence mem-
ories stored in extra-hippocampal, presumably neocortical, loca-
tions. Learning is undoubtedly associated with plastic changes
in sensory cortical regions (Harris et al., 2001; Ghose, 2004).
Moreover, many kinds of memory are preserved following hip-
pocampal damage yet become highly sensitive to hippocampal
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damage when a contextual component is present (Eichenbaum
et al.,, 1988; Phillips and LeDoux, 1992; Honey and Good,
1993; Eacott and Norman, 2004; Butterly et al., 2012; for
review see: Nadel, 2008). Work in patients with hippocampal
pathology has indicated that semantic memory (which is con-
text independent) is preserved while episodic memory (which
includes contextual information; see: Tulving and Markowitsch,
1998) is completely abolished. Coupled with the idea that the
hippocampus serves as an index that activates memories stored
elsewhere (Teyler and DiScenna, 1985, 1986), our results sug-
gest that a key function of the hippocampus is to supply an
ensemble representation of context that can serve to prime
memories encoded in extra-hippocampal circuits. Because the
context-appropriate memories are strongly primed, subjects are
less susceptible to interference from memories that belong to
other contexts (Smith and Bulkin, 2014).

In addition to group effects, we observed trial by trial varia-
tion in the representation that was predictive of performance.
On many trials from the new problem set (Bj,ia), the repre-
sentation of DC rats was similar to the previous day (Agua)
even though the rat was in an entirely new environmental con-
text (e.g., the lower MDI values in the DC example in Fig.
5B). How can two statistically independent representations, as
we observed in DC rats, vary in their similarity? Several recent
studies have demonstrated that, at the population level, hippo-
campal representations can alternate on a moment to moment
basis (Kelemen and Fenton, 2010; Jezek et al., 2011; Dupret
et al., 2013). In fact, new evidence suggests that the transition
from one hippocampal context representation to another is
accomplished by rapid “flickering” between the representations,
with the old pattern becoming more infrequent as the new pat-
tern becomes more prominent (Jezek et al., 2011). A similar
process, with transient appearances of the Ag,, representation,
may have been at work in our DC rats. However, the complex-
ity of our task and the fact that firing patterns were influenced
by a combination of spatial location and ongoing task events
made it impossible to observe these transitions.

Interestingly, SC Rats also showed trial by trial variability in
their representations and like the DC rats, more distinct repre-
sentations were associated with better performance. This may
also reflect the early stages of a transition to a new hippocam-
pal representation. Many studies have shown that hippocampal
neurons develop new representations in response to changes in
non-spatial aspects of the context, including shifts in the task
demands, behavioral strategies and motivational state (e.g.,
Wood et al., 2000; Smith and Mizumori, 2006b; Eschenko
and Mizumori, 2007; Kennedy and Shapiro, 2009). In previ-
ous studies (Smith and Mizumori, 2006b), we found that new
hippocampal representations emerge slowly when subtle
changes in task demands can only be detected through trial
and error. In the SC condition, the change from a well learned
odor discrimination problem set to a new, conflicting problem
set may have been enough to trigger the beginning of that pro-
cess. Alternatively, differences between correct and error trials
might have arisen from a representation that was less strongly
driven on error trials. Others have suggested that cells which
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show robust firing on correct trials fire less on trials in which
the rat makes an error (Robitsek et al., 2013). Although we
found no direct evidence for systematic differences between the
gross firing rates on correct and error trials, a slightly degraded
hippocampal context signal could have resulted in less robust
retrieval of the old, potentally interfering odor memories, and
improved performance. That is, a momentarily poorer hippo-
campal representation could, paradoxically, result in better per-
formance due to less robust retrieval of interfering memories.

The behavioral and physiological complexity in the present
experiment presented a unique set of analytic challenges, but
also a particularly rich data set with a variety of neural response
profiles. The location of the rat at any given moment, the
order and the timing of odor sampling, were all experimentally
uncontrolled—we left these decisions to the rat. This approach
provided data that highlights the heterogeneity of response
properties of individual neurons. We generally applied a strat-
egy of “agnostic” analyses, subjecting all cells to measures of
both spatial and temporal response change. Regardless of the
framework, ensemble activity was sufficient to identify the con-
text. Our population distance analyses relied exclusively on
neural covariance and did not use information about the rats’
position or the timing of task events. The results show that the
ensemble code is directly linked to the ability to use the con-
text to prevent interference.
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