Arizona State University

Intel-Cornell Cup

2015

Autonomous Disaster Relief Agents (ADRA)

Author:

Supervisor: Vageesh Bhasin
Dr. Yinong Chen David Ingraham
Sami Mian

April 20, 2015

Abstract

In a disaster situation, such as stranded tourists & hikers, identifying & locating them, and
delivering essential survival supplies becomes a task of utmost importance for first-respondersf,
like EMSE personnels. The project aims at developing a tool that will support the current
search & rescue operation, as well provide a mechanism for delivering packages in a safe and
timely manner.

The solution is to build a network of inter-communicating copters that will be responsible
for surveying an area, finding positions of potential targets and dropping packages near them.
For demonstration purposes, we will be building a network of 2 copters, one responsible for
surveillance and the other for delivery. The 2 copters will be in constant communication with a
base camp, that will be doing all the heavy computational processes, such as human detection,
flight control & navigational commands, etc. (explained further).

IFirst people to arrive at and assist in a scene of emergency
2Emergency Medical Services

Contents

1_Challenge 4
1.1 Description e e e e e e e e e e e 4
.2 Motivation e e e e e e e e e 4
1.3 Requirementy e e e e e e e e e e e e e 4
.4 Tmportancd o i e e e e 5

5
2.1 Concept & DesiredSolution e 5
2.2 ProposedSolution. 5
2.3 ProjectComponents e e e e e e e 7
2.4 Project Sub-Components e e e 7
2.5 Changesfrom OriginalSolution 8
R.6 Tnnovation e e e e 8

B8 Performance Evaluation 9
B.1 Measuresto meetchallengeneedy, 9
B.2 Performance Measure Matrix for Sub-systemsg 10
B.3 PerformanceEvaluation 11
B.4 Evaluation Summary] e e e e e e e e 11

@4 Technical Documentation 11
U1 Software Architecture e e e e 11

B.1.1 ROS:Overview i i e e e e e e e e e e 11
B.1.2 ROSNomenclaturg oo 11
BI3 WhyROSZ e 13
B.1.4 UsIngROS e e e e e e e 13
4.2 Network Infrastructure &Setug o o 19
#h.2.1 One-to-OneWiFINetwork 19
B.2.2 WiFiMesh Network. e 21
#“.3 FlightControllers o 22
B.3.1 PixHawk PX4 e e e e 23
4.4 Multirotor Airframe & Power Systemsg L oo oL 26
Bh4.1 PowerSystems oo 26
h4.2 Propellerd 26
B.4.3 Motord e e 26
B.4.4 PowerSupply e e 26
B.5 ImageProcessing e e e e e e e e e e e e e e 27
#.5.1 Basic Image Processing: Capturing video fromcamera 27
#.5.2 Human Detection: Histograms of Oriented Gradienty 28

b5 Project Execution 30

5.1 ChallengesinProjecti e 30
5.2 Risks&Mitigationy L 30
5.3 PeerReviews e e e e e e e e e e e 31
5.4 ComponentlistandBudget. 32
b Recommendations & Next Steps 32

1 Challenge

1.1 Description

First-responders are faced with a challenging task of locating, rescuing and providing necessary
aides to victims of a disaster. Even if the responders have necessary resources, delivering them in
a safe and timely manner poses a challenge in itself. This is especially true in the case of stranded
hikers and visitors of beautiful landscapes and tourist spots in Arizona. Besides this, there is a
probability of delay in a rescue operation due to unforeseen and unavoidable circumstances, such
as harsh weather and hazardous terrain.

The project aims at tackling the problem in hand, by providing the first-responders with a tool
that will allow them to safely survey an area, locate victims and deliver essential supplies. Thus,
helping the victim till the time a rescue team reaches them. This will be achieved with a network
of quadcoptersg, having two different (inter-changeable) roles. One set of copters will be respon-
sible for surveying an area and identifying potential targets, whereas the second set of copters
will be responsible for delivering the supply package.

1.2 Motivation

We are avid nature lovers and frequently hike the scenic Arizona landscapes, including forests, hills
and mountains. News about stranded hikers is very common, and given the scorching heat and di-
verse terrain in Arizona, rescuing these hikers becomes a difficult job for the EMS personnel. Due
to the heat, dehydration can come quickly, therefore a quick response is of essence. Sometimes,
the only rescue option is via a helicopter, which requires preparation and even longer execution
time.

The above reasons made us think about devising a method to help these victims & personnels. Our
intended goal is to support the current search & rescue operation, and provide a way of delivering
essential supplies to the victims until the EMS personnels reach them.

1.3 Requirements

To support the search operation, we require the tool to be quick to assemble & deploy, and should
be able to survey & locate the victims quickly. The other criteria essential for the tool to be suc-
cessful involves a mechanism to deliver packages safely & quickly. Even if the tool is autonomousf
or semiautonomousf, we want human judgment to have significant impact, allowing it to over-
ride the default tool behavior. Last, but not the least, we want the solution to leverage available
resources for communication and at the same time not be fully dependent on them. The solu-
tion should be able to switch between network protocols so as to keep the dependency at it's
minimum.

3A multi-rotor helicopter, uses four propellers to left and propel
“Having the power to govern itself
>Largely self governing within an bigger entity

1.4 Importance

In a retrospective cohort study of search & rescue operations (conducted in the state of Oregon),
it was observed that out of 1040 searches in the period 1997-2000, involving 1509 victims, 70
(4.6 %) of them died. In the same study, out of 1262 searches in the period 2001-2013, involving
1778 victims, 115 (6.5 %) of them died. On an average, the search & rescue time was 18.5 hours
(1997-2000) and 19.75 hours (2001-2003).[2]

The above information is relevant to our cause, because the tool not only allows for quicker
response, but also provides wider coverage by deploying multiple copters. The impact of the
tool will save countless lives, as well as help in making the SAR operation efficient and less time
consuming.

2 Solution

2.1 Concept & Desired Solution

Given the challenge in hand, the solution is required to perform three important tasks:

1. Survey & Locate victims: The solution (or a component of it) should be able to survey a
designated area and identify potential victims that require rescuing. A good solution should
be able to carry out this task in an efficient manner so as to keep the surveillance time as
minimum as possible.

2. Relay victim coordinates: Once the victims are identified, the solution(or a component of
it) should provide the positions of the victim to the base campf. A good solution should
then continue surveying the area for locating other targets.

3. Deliver supply package: Finally, when the position coordinates of the victims are received
by the base camp, the solution(or a component of it) should deliver its payload?(which may
contain communication aides, food packets, medical supplied, etc.). A good solution should
deliver this package quickly and at a safe & reachable distance from the victims.

Each of the above tasks are equally valuable towards the mission's success. However, the last
2 tasks rely heavily on the first task. Therefore, a good solution should allow deploying multiple
sub-components to boost the first task execution.

2.2 Proposed Solution

Keeping the desired solution in mind, our project leverages aerial capabilities of quadcopters(discussed
in XYZ) for surveying an area and delivering packages, and processing capabilities of the Intel-Atom
processor for identifying humans from sensory data, as well as providing navigational commands

to the quadcopters.

6A camp from where SAR activities are coordinated
“Package carried by a vehicle

A high-level overview of the system work-flow can be described as follows:

1.

Assembly & Deployment - The system solution is transported to the disaster location, where
it is assembled and a base camp is established.

. Surveillance - A quadcopter is deployed with a target destination. It's main responsibility is

to survey within a circular radius from the target position and gather imagery data. It should
be able to use pre-planned navigational techniques to completely comb it's designated area.
The gathered data should be relayed back to the base camp for further processing.

Image Data Processing - The imagery data from the quadcopter is processed by the master
node(located at the base camp), which uses Image Processing techniques to detect humans
from the data. A good solution should be able to detect humans with high accuracy and low
computational time.

Delivery - Once potential targets have been identified and ascertained, a second quadcopter
carrying a payload of either communication aides or medical supplies or food packets is
deployed. This copter flies directly to the target location and drops off the package near the
victims.

Human Operator Ground Control Station UAV Human Aid Workers
Configure Generate Deploy With
Mission Survey Flight Sensor
Parameters Patterns Payload
Process and
Aggregate Collect Survey
No
Survey Data
Results ™~
Collect Survey
Data
Survivor
Detected?

Yes
PR EE——

Identify and
Display
Potential Aid
Targets

-Yes.
e Prepare
\\——-b Report, Aid or Rescue
Contact Crews
Deploy with
Aid Package

Deliver Aid

Human
Workers
Available?,

Figure 1: A flow diagram showing the work-flow of the system solution

2.3 Project Components

We've taken a modular approach towards developing our proposed solution, so that it is easier
to understand and build. Listed below are the components of the project and their description of
role responsibilities:

1. Quadcopters:

Surveillance Copter - This copter will be responsible for surveying an area and gathering
images of that area. This data will be sent back to the base camp in real-time for further
processing.

Delivery Copter - This copter will be responsible for delivering the payload at the target
location.

2. Base Camp:

The base camp will be powered by the Intel-Atom processor, and it's main responsibility
includes processing & extracting objects from the relayed imagery data, providing naviga-
tional commands, and dispatching the delivery copter to target location.

2.4 Project Sub-Components

Furthermore, we've divided the above mentioned components into 3 sub-components, as de-
scribed below:

1. Hardware & Communications - This sub-component deals with selection of hardware ma-
terials, building the copters and setting up communication infrastructure.

Hardware Selection & Design - Hardware components were selected on the following
criteria: availability, reliability, and quality, ease of use and integration, and cost. After the
selection process, design analysis is carried out for determining a suitable design in terms
of ease of manufacturing/assembling, and stability and reliability.

Communications - Communication systems are the backbone of creating a network of
intercommunicating robots. Since the copters have minimal computing power, for decision
making, communication systems become very important. Having continuous communica-
tion channel between the copters and the base camp is of utmost importance. An optimal
communication system should be able to handle multiple channels and be broad enough to
accommodate heavy data transfer.

Power Systems - The copters are designed to have a power monitoring module. Contin-
uous monitoring of power consumption, as well as decision making in low power scenarios
will be taken care of by the base camp.

2. Software & Algorithms - This sub-component deals with navigational algorithms, image pro-
cessing and interface development.

Attitude Control - Attitude estimation and control deals with determining the orienta-
tion of the copter with respect to it's surrounding environment. Because of the unknown
nature of the environment, the copter and it's system should be robust enough to not allow
external forces to modify it's orientation and position.

Guidance & Navigation - For an aerial vehicle, Guidance B & Navigationf refers to plan-
ning, sensing and controlling the motion of the vehicle to arrive at a target. One of the
major challenges is to determine an optimal path for saving time and energy. For the pur-
pose of the competition, the project aims at developing the system to navigate in an open
environment®,

Image Processing - Image Processing refers to the signal processing of images for either
obtaining another image or extract a set of characteristics. Visual sensors, such as video
cameras, would be mounted on the surveillance copter for acquiring image data for analysis.
The data will be processed at the base camp to extract key descriptors for detecting humans.

3. Modeling & Simulation - Before actual implementation of all the algorithmes, it is very im-
portant to have a running simulation of the system for testing and analytical purposes. Us-
ing open-source simulation packages, we've created simulation to demonstrate the project
functioning.

2.5 Changes from Original Solution

At the time of conception, the solution was aimed at being fully-autonomous. As we progressed
further with our concept, we conducted interviews with the EMS personnels who are the main
users for our solution. It was evident from their feedback, that a fully-autonomous solution is not
desired, and a human operator should act as the administrator of the system solution. Therefore,
we have shifted our focus on developing a semi-autonomous solution, where the copters and the
base camp will do all the surveying and processing, but a human operator will be responsible for
the final decision, which includes, verifying detected humans and delivery copter dispatch.

2.6 Innovation

Using drones for the purpose of surveillance or dispatch is not new. Drones have been used widely
by U.S. Military for reconnaissance usage as well as lethal usage[[13]. Drones have also been used
for commercial purposes, such as Amazon Prime Air[4].

However, the novel aspect of our solution is to combine the two usages and provide an inte-
grated solution for supporting relief activities. Our solution is modular and inter-changeable in
nature. In other words, each component is built keeping modularity in mind. The payload module
provides multiple options, and can be customized as per the need of the mission. Secondly, the
copters are built keeping multi-purpose utility in mind. A delivery copter can be switched into a
surveillance copter just by adding the image module.

While developing and working on our initial concept, we've realized that the above mentioned
strengths will allow us to use the solution across multiple scenarios. Some of the uses, besides
our main target use, include:

e Agricultural Use - Using drones to check for incests and pests on a field, and spraying chem-
icals to counter them.

8The determination of the desired path of travel from the vehicle's current location to the designated target[4]
?The method of determining the position, course and distance traveled[f1§]
0 An environment where density of obstacles is less

e Media Arrangements - Using drones to shoot videos across functions, like graduation con-
vocations & wedding arrangements, and deliver important packages, like graduation speech
letters & wedding rings or vows, respectively.

3 Performance Evaluation

3.1 Measures to meet challenge needs

Given the challenge requirements, an optimal solution should adhere to the following measure

properties and fit the target goal:

Criteria

Description

Target Goal

Assembly

Time taken to assemble the
system at target site

The system should be assem-
bled at the target location
within XXX minutes.

Deployment & Data Gathering

Time taken for a component
to be deployed from base
camp & gather input data for
processing

The system should be able to
deploy a component within
XXX minutes and gather im-
age data for processing.

Detection Accuracy

Accuracy of identifying and
detecting humans from the
image data

The system should be able to
detect humans with at least
XXX accuracy and within XXX
milliseconds.

Delivery

Time taken to drop off the
payload and the quality of
payload at the target

The system should drop the
payload without any dam-
ages to it.

Table 1: Challenge Meeting Measures

3.2 Performance Measure Matrix for Sub-systems

To attain overall goal for an optimal solution, we set out a performance measure matrix for our
sub-systems as below:

Sub-system Property Name Property Criteria Target Goal
Attitude Control | Position Hold Should be able to hold it's position | >2 minutes
for at least target time
Deployment Should be able to deploy within tar- | <2 minutes
Navigation get time
ETA Should be able to arrive at it's EE)) ioo.metters
target location(a) within target minutes
time(b)
Object avoidance Should be able to avoid obstacles
on it's flight path
. L. Network Channel Should be able to communicate
Communications
constantly on the network
Data Transfer Should be able to transfer data | 95%
(telemetry & image) with at least
target transfer accuracy
Power Monitoring | Should be able to monitor power
Power . .
consumption and estimated re-
maining power
Low Power Should be able to alert the opera- | 20%
tor in case of low power than target
threshold
. Detection Accuracy | Should be able to detect humansin | 90%
Image Processing .
a frame with at least target accu-
racy
Computation Time | Should be able to detect humansin | 200ms

a frame within target time

Table 2: Subsystem Performance Measure Matrix

10

3.3 Performance Evaluation

After development of the subsystems, we tested them according to the matrix stated in Section
3.2. The below table represents the results:

Sub-system Property Name | Target Goal | Achieved Status Description / Notes

Attitude Control | Position Hold > 2 minutes Y N/A N/A
Navigation Deployment < 15 minutes N N/A Current software is in beta version. Needs more testing and bundling.

ETA (a) 2km Y (a) 3km N/A

(b) 5 minutes (b) 5 minutes

Communication | Data Transfer 95% Y 85% Current transfer algorithm is loss-y. Need to optimize to get loss-less transfer.
Power Low Power 20% Y 20% N/A
Image Processing | Detection Accuracy | 90% N N/A Default HOG of OpenCV used, need to train its descriptors.

Computation Time | 250ms N ~500ms Need to train HOG for lower computation time.

Figure 2: Subsystem performance evaluation

4 Technical Documentation

The technical documentation section has been designed to outline the components used in the
solution. A description of the component and it's sub-components have been provided, in an
attempt to guide a reader towards replicating the solution.

4.1 Software Architecture

4.1.1 ROS: Overview

The project uses ROSH as its underlying architecture for creating a network of nodes, where each
node is responsible for a certain task. ROS is an operating system (not a traditional OS) that pro-
vides a structured communications layer for a heterogeneous® compute cluster™&[17].

It provides hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, writing, and running code across multiple computers

4.1.2 ROS Nomenclature

A system built using ROS consists of a number of processes connected at runtime in a peer-to-peer
topology. These processes are analogous to system modules, and are called nodes. A system is
typically comprised of many nodes.[17]

" Robot Operating System
2Dijverse in character
BLoosely or tightly coupled computers performing a specific task

11

Nodes communicate via passing a data structure, known as messages. A message is a a strictly
typed data structure. Standard primitive types (integer, floating point, boolean, etc.) are sup-
ported, as are arrays of primitive types and constants. Messages can be composed of other mes-
sages, and arrays of other messages.[[17]

These nodes communicate with each other using special communication channels known as
topics. A node that wants to send a message "publishes" it on a specific topic. A node that is
interested in a certain kind of data will "subscribe" to the appropriate topic. There may be multiple
concurrent publishers and subscribers for a single topic, and a single node may publish and/or
subscribe to multiple topics.

Services are another way that nodes can communicate with each other. Services allow nodes
to send a request and receive a response.

Bags are a format for saving and playing back ROS message data. Bags are an important mech-
anism for storing data, such as sensor data, that can be difficult to collect but is necessary for

developing and testing algorithms[#].
Service Mode l

Publication

MNode

Subscription

MNode '

Publication

Figure 3: High level overview of ROS Architecture[{10]

12

4.1.3 WhyROS?

ROS is open-source, easily deployable on embedded systems platforms and has a big community.
Besides these, the below technical specifications are some of the reasons that convinced us to
select ROS over other platforms (such as Microsoft Robotics Developer Studio, Naogi and URBI)

[17]:

Peer-to-Peer - ROS allows to visualize and use components in a system as individual nodes,
that communicate with each other via a communication layer provided by ROS.

Multi-Lingual - ROS is language-neutral. ROS currently supports the following different lan-
guages: C++, Python, JAVA, Lua, and LISP.

Tool-based - A large number of small tools are used to build and run the various ROS compo-
nents, rather than constructing a monolithic development and runtime environment. These
tools perform various tasks, e.g., navigate the source code tree, get and set configuration
parameters, visualize the peer-to-peer connection topology, measure bandwidth utilization,
graphically plot message data, auto-generate documentation, etc.

Thin - The ROS build system performs modular builds inside the source code tree, and it's
use of CMake makes it comparatively easy to follow this “thin” ideology.

Free & Open-Source - The full source code of ROS is publicly available. ROS is distributed
under the terms of the BSD license, which allows the development of both non-commercial
and commercial projects.

4.1.4 Using ROS

4.1.4.1 ROS File-system

The file-system describe the hierarchy of components within the ROS system, and are described
below[f]:

Packages - Packages are the main unit for organizing software in ROS. A package may contain
ROS runtime processes (nodes), a ROS-dependent library, datasets, configuration files, or
anything else that is usefully organized together. Packages are the most atomic build item
and release item in ROS. Meaning that the most granular thing you can build and release is
a package.

Metapackages - Metapackages are specialized Packages which only serve to represent a
group of related other packages.

Package Manifests - Manifests (package.xml) provide metadata about a package, including
it's name, version, description, license information, dependencies, and other meta informa-
tion like exported packages.

13

e Repositories - A collection of packages which share a common VCS system. Packages
which share a VCS share the same version and can be released together using the catkin®
release automation tool.

e Message (msg) types - Message descriptions define the data structures for messages sent
in ROS.

e Service (srv) types - Service descriptions define the request and response data structures
for services in ROS.

4.1.4.2 ROS Configuration & Management

ROS (current stable version Indigo) can easily be downloaded and installed for it's supported plat-
forms from the following download link.

After installing ROS, we need to setup environment variables to be used by ROS. This can be
accomplished by issuing the following command:

source /opt/ros/<distro >/setup.bash

$ source /opt/ros/indigo/setup.bash

Snippet 1: Sourcing ROS Environment variables

ROS uses catkin as it's workspace manager and build tool. To create a catkin workspace, use
the following command:

$ mkdir —p ~/catkin_ws/src
$ cd ~/catkin_ws/src
$ catkin_init_workspace

Snippet 2: Initializing catking workspace
Once the catkin workspace is initialized, you can download repositories and build them using
catkin_make command.
4.1.4.3 Building our ROS Package

Bundling everything within a package is advantageous in many aspects. ROS packages draw it's
strengths from the modular approach used by it's creators. Modularity, in this case, comes in the
form of building specific functionality into libraries which can be used by other packages[5]. As a
good habit, all use packages should be built within the src folder of catkin workspace.

A typical catkin package consists of the following items:

e package.xml - Contains the package meta information.

e CMakelists.txt - Input file for the CMake build system for building software packages.

14Version Control System
15 A build system, responsible for generating 'targets' from raw source code that can be used by an end user

14

http://wiki.ros.org/ROS/Installation

Catkin allows a shorthand command for building the boilerplate® of a ROS package. To create
a package, you can use the following command:

catkin_create_pkg <package_name> [dependl] [depend2] [depend3]
$ catkin_create_pkg adra std_msgs rospy roscpp

Snippet 3: Creating a ROS Package

The above command will create a package named adra, which will have dependencies on the
following packages std_msgs, rospy and roscpp. After creating our package, we can write our
custom library code within this directory, and build it using catkin_make.

4.1.4.4 Creating our Nodes

A node a simple executable file within the ROS package. They use ROS client libraries to publish
messages on topics, or subscribe to receive messages from topics. Nodes can also be used as
service providers or can invoke services.

Before creating and running our nodes, ROS requires us to run a couple of prerequisite pro-
cesses, which can be done using the roscore command. This command invokes and starts the ROS
Master™, ROS Parameter Server™ and rosout logging node™.

ROS provides some commands which can help in viewing running nodes[21]:

e rosnode list - Displays a list of active node

11$ rosnode list
> |# Output will be like:
3 |# /rosout

Snippet 4: Listing ROS Nodes

¢ rosnode info <node_name> - Displays the information about a specific node

$ rosnode info /rosout
Output will be like:

AWON .

Publications:

#

#

Node [/rosout]

#

* /rosout_agg [rosgraph_msgs/Log]

0 ® N o w

Subscriptions:

* /rosout [unknown type]
10
1 |# Services:

12 |# * /rosout/set_logger_level
* /rosout/get_loggers

+*

13

Snippet 5: ROS Node Information

16pjece of code that can be reused in new applications as a template
provides naming and registration services for nodes

18A shared, multi-variate dictionary that is accessible via network APIs
YA system wide logging node

15

AWON R

© ® N o u

10
11
12
13

15
16
17

18

AWON R

¢ rosrun [package_name] [node_name] - Runs a specific node within a ROS package

$ rosrun adra adra_master
Runs the node "adra_master" within the package

"adra"

Running node list command now will list a new node
rosnode list

Output will be like:

/rosout

/adra_master

® N o u &
H H H A

Snippet 6: Running a ROS Node

After learning how to view ROS nodes, it's time to create a sample node:

// Include the ROS C++ APIs
#include <ros/ros.h>

// Include file declarations
#include <adra/sample_node.h>

int main(int argc, char** argv) {
// Initialize ROS node named "adra_sample_node"
ros::init(argc, argv, "adra_sample_node");
ros :: NodeHandle nh;
// DO WORK
// Wait for SIGINT/Ctrl—-C

ros::spin();
return O;

Snippet 7: Sample ROS Node Code in C++

Once you save the code for the node, we need to build it and run it.

Don't forget to update the CMakelists.txt to include our newly created file
$ catkin_make

$ rosrun adra adra_sample_node

Snippet 8: Building and Running our node

16

4.1.4.5 ROS Tools

One of most important driving factor behind choosing ROS is it's rich package repositories and
community. We use rqt extensively since it's a software framework that implements and inte-
grates various available GUI tools in the form of plugins.

Some of the plugins that we find valuable are:

¢ Node Graph [rqt_graph] - A plugin to visualize the ROS Computation graph®.

> Default - RosGui
File Plugins Running Perspectives Help
ROS Graph D@ ox
@ | | Nodes/Topics (all) =7 /)| B B .
& namespaces [actions [deadsinks @ leaftopics [Hide Debug & Highlight & Fit | (1)
move_group

== fmove_group/display_planned_path

Figure 4: GUI for rqt_graph[19]

¢ Process Monitor [rqt_top] - A plugin to monitor ROS processes.

e Console [rqt_console] - A plugin that displays and allows filtering of ROS messages.

Default - RosGui

File Plugins Running Perspectives Help
iconsole DiEC@ ox
& Load B save [l pause | Displaying 39 messages Clear Resize Columns
Message Severity Node Time =
12 0 The input topic '/narrow_stereo/left/image_raw' is not yet advertised warn /narrow_stereo_textured/... 21:39:04.833 (2013-05-06) /rc
#10 @ The input topic '/narrow_stereoj/right/image_raw' is not yet advertised | Warn /narrow_stereo/narrow_st... 21:39:02.337 (2013-05-06) /rc
#11 @ The input topic '/narrow_stereo/right/camera_info' is not yet advertised | Warn /narrow_stereo/narrow_st... 21:39:02.337 (2013-05-06) /rc
#8 @ The input topic '/narrow_stereojleft/image_raw' is not yet advertised warn /narrow_stereo/narrow_st... 21:39:02.336 (2013-05-06) /ro
#9 @ The input topic '/narrow_stereo/left/camera_info' is not yet advertised | Warn /narrow_stereo/narrow_st... 21:39:02.336 (2013-05-06) /rc
#7 @ Holding arms Info Jarm_holder 21:39:01.402 (2013-05-06) ftc
#18 @ The input topic '/wide_stereo/right/camera_info' is not yet advertised warn Jwide_sterec/wide_stereo... 21:39:01.086 (2013-05-06) /rg
#16 @ The input topic '/wide_stereo/left/camera_info' is not yet advertised Warn Jwide_stereo/wide_stereo... 21:39:01.085 (2013-05-06) /rg
#17 @ The input topic '/wide_stereo/right/image_raw' is not yet advertised warn Jwide_sterec/wide_stereo... 21:39:01.085 (2013-05-06) /rg
#6 @ The input topic '/wide_stereo/left/image_raw' is not yet advertised warn Jwide_stereo/wide_stereo... 21:39:01.085 (2013-05-06) /rc
#5 @ Moving torso up Info Jarm_holder 21:38:56.400 (2013-05-06) ftc_
P~ i a— b . F— B
Exclude Rules:
+
Highlight Rules:
L
+

Figure 5: GUI for rqt_console[18]

e Message Type Browser [rqt_msg] - A plugin for introspecting available ROS message type.

2Opeer-to-peer network of ROS processes that are processing data together

17

¢ Topic Monitor [rqt_topic] - A plugin for displaying debug information about ROS topics in-
cluding publishers, subscribers, publishing rate, and ROS Messages.

¢ Plot [rqt_plot] - A plugin for visualizing data values in a 2D plot.

MatPlot DEC@® o

Topic |/ | | n— lﬂ]@
OO +% B« x=6.74381 y=4.30862

— Jturtlel/pose/x
6.5r| — /turtlel/posely

6.0

5.5

5.0

4.5

4.0

3.5

Figure 6: GUI for rqt_plot[20]

Besides the above mentioned plugins, we also use Gazebo for our simulation purpose. Gazebo
allows us to accurately and efficiently simulate populations of robots in complex indoor and out-
door environments. ROS allows integration with Gazebo using the gazebo_ros_pkgs, which is a
set of packages that provide wrapper classes around Gazebo.

Figure 7: GUI for Gazebo[3]

18

© ® N o

4.2 Network Infrastructure & Setup

Establishing communication network for data transfer is one of the key areas for a successful solu-
tion. An optimal solution for this component should be able to maintain the network for long dis-
tance usage. The data channel should be broad enough for sending/receiving image data. While
developing the project, we had 2 broad implementation ideas/concepts, which we have discussed
below. Due to time & resource limitations, we could only implement a communication network
over a one-to-one WiFi network.

4.2.1 One-to-One WiFi Network

One of the original ideas for connecting the quadcopters together was using WiFi to link each
robot with the monitoring station. The WiFi connection is important because it will allow the
quads to transmit large bandwidth video and images (preferable HD) back to the station for video
processing.

The underlying protocol for communication used in this kind of network was MAVLIinkE. MAVLink
is a very lightweight, header-only message marshaling library for micro air vehicles. It can pack
C-structs over serial channels with high efficiency and send these packets to the ground control
station. It is extensively tested and used on multiple drone platforms, such as the PX4, PIXHAWK,
APM and Parrot AR-Drone. It serves as their communication backbone for the MCU/IMU commu-
nication as well as for Linux interprocess and ground link communication[14].

Messages are transmitted over MAVLink as XML data structures, which are then converted
into C/C++, Python or C# Code using generators. A definition of a simple MAVLink message is
given below:

<message id="0" name="HEARTBEAT">

<description></description>

<field type="uint8_t" name="type"></field>

<field type="uint8_t" name="autopilot"></field>

<field type="uint8_t" name="base_mode"></field >

<field type="uint32_t" name="custom_mode"></field >

<field type="uint8_t" name="system_status"></field>

<field type="uint8_t_mavlink_version" name="mavlink_version"></field >
</message>

Snippet 9: Sample MAVLink Message
Description of the message fields are as follows:

e Description - The heartbeat message shows that a system is present and responding. The
type of the MAV and Autopilot hardware allow the receiving system to treat further mes-
sages from this system appropriate (e.g. by laying out the user interface based on the au-
topilot).

e Type - Type of the MAV (quadrotor, helicopter, etc., up to 15 types).
¢ Autopilot - Autopilot Type / Class.

e Base Mode - System Mode.

2Micro Air Vehicle Communication Protocol

19

0 ® N o w

e Custom Mode - Navigation Mode.
e System Status - System Status flag.
e Mavlink Version - Version of the MAVLink protocol

MAVLink also allows us to define our own custom message fields. It is advisable to organize
our custom fields into a single message definition file. An example of custom fields is given below:

<messages>
<message id="150" name="QUAD_RAW" >
<description>This message encodes all of the custom data for our UAV.</
description>
<field type="uintl6_t" name="position"></field>
<field type="uint8_t" name="port_limit"></field>
<field type="uint8_t" name="center_limit"></field >
<field type="uint8_t" name="starboard_limit"></field>
</message>
</messages>

Snippet 10: Custom MAVLink Message

MAVLink also has bridge for ROS developed by the ETH PIXHAWK team, known as MAVROS.
The bridge translates between UART/serial ports and UDP links transporting MAVLink and a ROS
instance on the computer.

Integrating MAVLink(via MAVROS) is non-intrusive, i.e., it does not need to become a central
part of the on-board architecture on our quadcopter. It provides parameter and way-point han-
dles, which are read by the autopilot from the appropriate data structures. Since it is a header-only
library, we do not have to compile it. A typical MAVLink flow is described below:

___Small Unmanned System (ID#100) __ Ground Station_________
| | ! :
| . " . N 1
| Autopilot MissionLib i I ') '
i Data +—p=| (Parameters, ' i M':Jg #E:tgg ot M'FLDV iﬁ ?}‘ﬂm | MAV Abstraction Layer
I | Structures Waypoints) |_ | Library allows 10 ! i !
| "t~ Quickly implement | —
! ' parameter and | !
! ' waypoint protocols | !
| - 1 | S 1
! MAVLink . : MAVLink ! .
| .
! Format +——— UART/ Ra:dlo Modems / UDP / WIFI !?02 11abgn ————— = Format i MAVLInk Layer
| i ! 1
! 1

Ensures stability in message format :

Figure 8: MAVLink Communication Flow

20

4.2.2 WiFi Mesh Network

One-to-One WiFi network is easy to setup and integrate with our ROS environment. However,
there are a few limitations with this method, the biggest being the strength of the WiFi signal and
interference from other sources limiting the distance the quads can travel while sustaining the
connection.

Another approach towards countering the range problem is to utilize a WiFi mesh network. Ina
WiFi mesh design, each quadcopter would act as an access point within a network, and each quad-
copter would be connected to the others via WiFi and each other. For extremely large swarms of
guads, one or two quads can be included that just act as large access points with strong antennas,
just like network hubs in a LAN network.

The WiFi mesh network will be implemented using the IEEE 802.11s protocol. This protocol is
an 802.11 amendment specifically created for mesh networking. It defines how wireless devices
are able to connect together, creating a Wide Local Area Mesh Network (WLAN Mesh), which in
this case would be a large ad-hoc network.

In this particular mesh network, each quadcopter will be identified by a pre-assigned static IP
address, which will be managed by a router connected to the base station, run by the Intel Altera
board provided by the competition. Each quad has a 802.11s capable WiFi adapter, which will
allow each quad to become a WiFi access point. On-board software will manage the quadcopters
connections to the other robots, actively searching for others which are in range and trying to
connect to them. Each quadcopter will have its own object in the Robot Operating System (ROS)
project, and all communication between the quads will be handled by a separate program, which
will receive inputs from the ROS algorithms.

-, —— - - -

Base Station
Control Systam

Figure 9: WiFi Mesh Network

21

As stated before, the primary purpose for this implementation will be in order to extend the
range of the quadcopters. The base station will be able to decide which quads will be able to relay
back video data. The quadcopters which are out of range from the base station will send their
video data through a string of access points on closer quads until it reaches the base station. The
data connection path for each of the quadcopters will be determined by the base station every
time a new access point is added to the network, just as is done in a DHCP network by a router.

A diagram depicting the WiFi Mesh network is given in fig. 8. The solid arrows represent
direct connections between quadcopters and the base station. The dotted lines represent the
mesh connections between the access points on the quadcopters.

4.3 Flight Controllers

The flight controller is the nerve center of a drone. Flight control systems can be GPS enabled
autopilot systems flown via two way telemetry links or basic stabilization systems using hobby
grade radio control hardware[8].

Flight control systems have many sensors available to them - GPS, barometric pressure sen-
sors, airspeed sensors, among others. The major contributors to the flight calculations are still the
gyros®, coupled with accelerometers®.

Use the ailerons to control

Roll

Roll

Rudder O | Use the rudder to control
i Yaw

Use the elevators to control

Pitch

Figure 10: Flight Dynamic Parameters

22Measure rate of rotation about an axis
28Measure acceleration

22

Together, these sensors can help measure the 3 critical flight dynamic parameters (refer fig. 9

[90):
¢ Roll - Rotation around the front-to-back axis
¢ Pitch - Rotation around the side-to-side axis
e Yaw - Rotation around the vertical axis

Special devices, called Inertial Measurement Units (IMU), are used to read the sensors and
use sensor fusing algorithms to determine current position and attitude. These readings are then
made available to the autopilot for use or transmission.

4.3.1 PixHawk PX4

Our choice over several other autopilot projects (such as ARDUPilot, OpenPilot, etc.) was PX4.
The main reasons behind choosing PX4 was it's easy to understand tutorials, integration with ROS
using the MAVROS package and a provision of simulating the PX4 stack on ROS+Gazebo.

PX4 is an independent, open-source, open-hardware project aiming at providing a high-end
autopilot to the academic, hobby and industrial communities, licensed under BSD license. It is
a high-performance autopilot-on-module suitable for fixed wing, multi rotors, helicopters, cars,
boats and any other robotic platform that can move[12].

Figure 11: Pixhawk PX4 Flight Controller

23

4.3.1.1 Technical Specifications[12]
e Processor - 32-bit STM32F427 Cortex M4 core with FPU
e RAM - 256 KB
¢ Flash Memory - 2 MB

e Co-Processor - 32 bit STM32F103

4.3.1.2 Software

The open-source software suite used with PX4 contains everything to let airborne system fly in-
cluding the QGroundControl[15] and 2/3D aerial maps (with Google Earth support) and drag-and-
drop waypoints.

4.3.1.3 Integrating with ROS

A bridge connection needs to be setup with an on-board system, for trading MAVLink messages.
A companion computer® can be connected using a UARTZ cable, or a UART adapter or a USBZ
cable.

After setting up the bridge connection, we can run a ROS node on the on-board computer (e.g.
Odroid Board), which can then be connected to our base camp using a WiFi network.

——

& oixdwnate @

Pixhawk PX4 | ! !
! . MAVLInk
5 | (Using MAVROS) | ROS Master Node |
: | ! (Ground Station at |
- umRT) > :
| UART Adapter / | | Base Camp) |

UsB |

Figure 12: PX4 & RSOS Integration

240n-board computer connected with bridge connection
2>Universal Asynchronous Receiver / Transmitter
2Universal Serial Bus

24

© N o wu

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

The ROS node on our on-board computer can be run by using the sample launch file below:

<launch >

<arg name="fcu_url" default="serial:///dev/ttyACM0:921600" />

<arg name="gcs_url" default="udp://:14556@192.168.150.2:14550" />

<arg name="tgt_system" default="1" />
<arg name="tgt_component" default="50" />

<node name="mavros" pkg="mavros" type="mavros_node" output="screen">

<param name="fcu_url" value="¢$(arg fcu_url)" />

<param name="gcs_url" value="¢$(arg gcs_url)" />

<param name="target_system_id" value="¢$(arg tgt_system)" />
<param name="target_component_id" value="¢$(arg tgt_component)'

<rosparam command="load" file="¢(find mavros)/launch/px4_blacklist

<!— enable heartbeat send and reduce timeout —>
<param name="conn_heartbeat" value="5.0" />
<param name="conn_timeout" value="5.0" />

<!— automatically start mavlink on USB —>
<param name="startup_px4_usb_quirk" value="true" />

</node>

<node name="camera" pkg="usb_cam" type="usb_cam_node">
<param name="video_device" value="/dev/videoO" />
<param name="image_width" value="800" />
<param name="image_height" value="600" />
<param name="pixel_format" value="mjpeg" />
<param name="framerate" value="30" />
<param name="camera_frame_id" value="webcam" />
</node>

</launch>

.yaml"/>

Snippet 11: PX4 ROS Launch File Sample

The above launch file launches 2 nodes, a MAVROS node and a Camera node. The node pub-
lishes data to a topic named camera/image_raw. We can then visualize the image data sent via
MAVLink using rqt plugin for image viewing.

Using ROS command for topic information, rostopic hz /camera/image_raw, we can see the
data transfer information like below:

subscribed to [/camera/image_raw]
average rate: 30.026

min: 0.027s max: 0.037s std dev: 0.00237s window: 28
average rate: 30.016

min: 0.027s max: 0.041s std dev: 0.00250s window: 58
average rate: 30.057

min: 0.027s max: 0.041s std dev: 0.00243s window: 88

Snippet 12: ROS Topic Information

25

4.4 Multirotor Airframe & Power Systems

This project relies on small unmanned aerial vehicles (SUAS) or surveying and package delivery.
There are four main categories of SUAS used today: Multicopters, Helicopters, Fixed Wing, and
VTOL Fixed Wing. For the purposes of this project, we chose to implement an initial concept using
multicopters due to their mechanical simplicity and ease of deployment.

Due to recent advancements in microprocessor and inertial sensing technology, multicopters
are now very capable and affordable for the hobbyist market. We chose to construct our quad-
copters from components designed for hobbyists due to their low cost and commercial availability.
By using components that are available off the shelf we are able to create an affordable system
and devote more development time to our innovative software functionality

Our primary objectives for the multirotor design were to maximize range and flight time.

4.4.1 Power Systems

A multirotor power system consists of several components that are all interdependent. When
designing a multirotor, one must consider the requirements of their system and select propellers,
motors, speed controllers, and power sources accordingly. In order to have an efficient system,
care must be taken to pair each of these components.

4.4.2 Propellers

Generally, a slower moving propeller with a large disc area is more efficient than a faster moving
propeller of smaller disc area producing an equal amount of static thrust. Because of this, we
decided to use large 17" propellers to produce the thrust for our system.

In order to most effectively select motors and the power source, potential component sets
were simulated using the ecalc xcoptercalc application maintained by Markus Muller. Twelve po-
tential sets of commercially available components were compared using ecalc. From these simu-
lations, the following set of components was selected.

4.4.3 Motors

Turnigy Multistar Elite 3508 motors were selected. These motors have a stator that is 35mm in
diameter by 8mm tall and a KV of 268RPM/Volt. Because of the large stator and slow KV, these
motors are capable of producing a large amount of torque very efficiently at low RPM. These
characteristics pair well with the 17” propellers we selected.

4.4.4 Power Supply

A Turnigy Multistar 6s (24v) 8Amp hour LiPo was selected for the power supply. Lithium Polymer
(LiPo) batteries are popular for multicopters due to their high energy density, high current output
and their relatively low cost. The motors we selected produce their maximum rated power output
at the 24v voltage of a 6 cell LiPo. By using 6 cell as opposed to the more common 4 cell, we are
able to deliver more power to the motors with less current. This allows the usage of a lighter
battery with a lower current rating. Additionally, this allows us to use smaller gauge wire and
connectors for power distribution, contributing additional weight savings.

26

I SR

© ® N o u»

4.5 Image Processing

Image processing is any form of signal processing for which the input is an image, such as a photo-
graph or video frame; the output of image processing may be either an image or a set of charac-
teristics or parameters related to the image. Most image-processing techniques involve treating
the image as a two-dimensional signal and applying standard signal-processing techniques to it[[1].

For our image processing in the project, we have heavily utilized OpenCVE. It is a library of
programming functions mainly aimed at real-time computer vision. OpenCV is written in C++ and
its primary interface is in C++. It also has full interfaces in Python, Java and MATLAB/OCTAVE. It
implements both infrastructure operations and image-processing and vision functions[11].

As an introduction to Image-processing (since it is one of the core areas of our solution), we
would like to share some basic tutorials on image-processing for human detection using OpenCV
and HOG algorithm([[7].

NOTE: We've uploaded sample OpenCV code on our blog and github.

4.5.1 Basic Image Processing: Capturing video from camera

Reading image data from a capture object, like a USB Camera or built-in camera, is really simple.
We use the VideoCapture object of OpenCV, and read the data frame-by-frame. Sample code and
in-line comment explanation will help you understand video capturing better:

// Include the OpenCV Header Files
#include "opencv2/highgui/highgui.hpp"
#include <iostream >

using namespace cv;
using namespace std;

int main(int argc, char* argv[])

{
// Create a VideoCapture Object and Open camera "O"
VideoCapture cap(0);

// Check if camera is opened

if (!cap.isOpened())

{
cout << "Cannot open the video cam" << endl;
return —1;

}

// Get Frame Size (Width and Height)
double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH) ;
double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT) ;

// Create a window to show image
namedWindow ("MyVideo" ,CV_WINDOW_AUTOSIZE) ;

270Open Source Computer Vision

27

http://blogs.cornell.edu/cornellcup2015adra/2015/04/02/image-processing/
https://github.com/vageeshb/OpenCV_Examples

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

while (1)
{

Mat frame;

// Read new frame into matrix
bool bSuccess = cap.read(frame);

if (!bSuccess)

{

cout << "Cannot read a frame from video stream" << endl;
break;

// Show the frame in the window
imshow ("MyVideo", frame);

// Quit if user presses 'esc' key

if (waitKey(30) == 27)
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return O;

Snippet 13: Video Capture Sample Code

4.5.2 Human Detection: Histograms of Oriented Gradients

Histograms of Oriented Gradients(HOG) are feature descriptors that are used in the field of image
processing for human detection. It evaluates and counts the occurrences of gradient orientations
in alocalized portion of an image. In other terms, an object appearing in an image can be described
by its distribution of intensity gradients.

{a} Descriptor Block {b}Block in sample image {c)Extracted +ve grad. {(d} Extracted -ve grad.

Figure 13: Overview of how HOG works

28

© N o w»n

19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

A sample implementation of HOG algorithm in OpenCV can be done as below:

#include <iostream >
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

int main (int argc, const char * argv([])
{
VideoCapture cap (CV_CAP_ANY);
cap.set (CV_CAP_PROP_FRAME_WIDTH, 320);
cap.set (CV_CAP_PROP_FRAME_HEIGHT, 240);
if (!cap.isOpened())
return —1;
Mat img;
HOGDescriptor hog;
hog.setSVMDetector (HOGDescriptor :: getDefaultPeopleDetector ());
namedWindow ("video capture", CV_WINDOW_AUTOSIZE) ;
while (true)
{
cap >> img;
if (limg.data)
continue;
vector <Rect> found, found_filtered;
hog.detectMultiScale (img, found, 0, Size(8,8), Size(32,32),
size_t i, j;
for (i=0; i<found.size (); i++)
{
Rect r = found[i];
for (j=0; j<found.size (); j++)
if (j!=i & (r & found[j])==r)
break;
if (j==found.size())
found_filtered . push_back(r);
1
for (i=0; i<found_filtered.size (); i++)
{
Rect r = found_filtered[i];
r.x += cvRound(r.width*0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.06);
r.height = cvRound(r.height*0.9);
rectangle (img, r.tl(), r.br(), cv::Scalar(0,255,0), 2);
}
imshow ("video capture", img);
if (waitKey(20) >= 0)
break ;
}
return O;
}

1.05,

2);

Snippet 14: HOG Implementation using OpenCV

29

5 Project Execution

5.1 Challenges in Project

Some of the challenges faced during execution of the project are:
1. Power Consumption Dilemma:
e Problem: Power consumption overheads for communication and image processing
tasks.
e Solution: Running optimization tests to figure out what level of data compression is
suitable for keeping overheads minimum.

2. Low Power Plan of Action:

e Problem: In case of low power, what should the plan of action be? Should we con-
tinue surveying and gather more data causing a lost in copters, or should we recall the
copters causing a loss in data and mission time?

e Solution: By default, we will be alerting the operator when power is below threshold.
The operator's decision and judgement will be followed by the system.
3. Network Configuration:
e Problem: The current network setup (Peer-to-Peer) has a major issue of low range for
mission. We want the system to be used for longer mission radius.

e Solution: We plan to implement the WiFi Mesh network as discussed in section 4.2.2.
4. Object Detection:

e Problem: The default HOG algorithm is designed for smaller images(1/3rd the size of
current captured image). Using this algorithm for this scale of image causes heavy
processing, leading to slow computation time.

e Solution: Overriding the default descriptors of HOG by training it will help in increasing
accuracy and decrease computation time.

5.2 Risks & Mitigations

Every project has risks, either identified before-hand or encountered while executing. The below
list describes the risks we have faced while executing the process, as well as mitigation steps taken:

1. Damages:

o Self Damage: While deployment, the copter might damage itself or it's surroundings
if sufficient space is not provided. A solution for this risk is to use a custom 3m X 3m
launchpad.

30

e Environment Damages: Due to sharp propellers rotating at high speeds, there might
be a possibility of accidental damages if not handled properly. Our solution is to fab-
ricate a brace/ring around the propeller so as to keep it from causing damages.

e Hardware Damages: Many individual components are used to build the whole system
together. Protecting these components, while keeping the weight to a reasonable limit
is a challenge. We have fabricated the design of the copter in such a way that it's main
components(flight controller, battery and on-board computer) are protected.

2. Obstacles:

e Airspace Disturbance: There might be a risk of other aerial vehicles sharing the same
airspace. In such a scenario, we need to plan our route or take an action to avoid
collision.

¢ Environment Disturbance: Sometimes, the weather or environment may not be friendly
for flying the copters. In such cases, safety overrides should be provided to the oper-
ator for safely landing and retrieving the copter.

5.3 Peer Reviews

While executing the project, we have tried to conduct reviews with peers, target audience and
industry experts. Some of the feedback given by them have been listed below:

1. Target Audience (EMS Personnels)

(a) Feedback More control for the operator.
Impact Change of scope of project, from autonomous to semi-autonomous.

(b) Feedback Different payload modules.
Impact 3 different payload cartridges housing packages for varying needs (like com-
munication aides, food packets and medical supplies).

2. Industry Expert (Network Configuration)

(a) Feedback Less reliance on Peer-to-peer network due to its inability to function over
long range.
Impact Learning about WiFi mesh network using IEEE 802.11s protocol, and imple-
menting it as a future task.

3. Peers

(a) Feedback Allowing multiple UAV configurations
Impact UAV configurations like multicopter(besides quadcopter) and fixed-wings are
being researched on.

31

5.4 Component List and Budget

The below list describes the components used in building a copter and their prices. Besides this,
the copter also uses a Pixhawk PX4 flight controller which costs around 200 $.

Fart * | Item Mame * | Qty. * | Price * |Subtotal |™
Mators Multistar Elite 3508 kv2&8 4] & 34.23 | 5 136.92
ESC Afro HY 20A 4| 5 1999 | & 79.56
Prop RC Timer 17x5.5" (2 pairs) 1| & 3997 | 5 39.97
Frame Tarot Ironman FY&50 1| 5 9776 | & 97.76
Battery hultistar HC 6s 8000 10-20C 1] 5 B1.23 | & 51.23 1!

Figure 14: Components used and their prices (per copter)

6 Recommendations & Next Steps

There are a few important additions to this project that need to be made in the immediate future.

1. The first change that needs to be implemented is upgrading the communication systems
of the quad copters. The major change that needs to be done for this is implementing the
WiFi mesh network with a group of the quadcopters. This is important because it will allow
for easy control of larger swarms of multicopters, as well as allowing quads far away from
the base station to send back high bandwidth video data without a decline in quality. The
other communication system that can be added to the quads is a system that allows the first
responders to communicate with the located victims, such as an audio connection.

2. The next major change is creating replaceable payload components for multi-domain projects.
This includes adding payloads consisting of more advanced sensors for detection and envi-
ronment analysis. The main sensors currently being considered are a thermal camera, and
LIDAR. The thermal camera would make it much easier to detect humans in large environ-
ments (especially at night in the desert). The IDAR would allow for the quad to implement
Simultaneous Localization and Mapping (SLAM), which would allow it to crease three di-
mensional models of the surrounding environments; these maps would make it easier for
autonomous route planning for the rest of the quads as well as for the first responders. The
other payload change would be modifying a delivery payload so it can also contain basic
detection sensors, like HD cameras.

3. The last of the important additions to this project that should be done is upgrading and
optimizing several of the software components. The two big pieces of the software that
need to be optimized are the path planning algorithms and the user interface for the ground
station. The path planning algorithms needs to be upgraded to use more data about the
surrounding environment. This can be aided with new data from the upgraded payloads,
such as SLAM data. The ground control station needs to be upgraded so the system is easy
for first responders to use and requires very little training on their part. If possible, the use of
the on-board FPGAs in the Intel embedded board can also be utilized to improve the image
processing performance and return more accurate results.

32

Appendix: Figures

A tflow diagram showing the work-tflow of the system solution.
Subsystem performance evaluation
High level overview of ROS Architecture{10}
GUIforrgt_graph[19] e
GUIforrgt_console[18] e
GUlforrgt_plot[20] e
GUITor Gazebol3] o o e e e e e e e
MAVLInk CommunicationFlow,
WIFIMesh Networl e
10 Flight Dynamic Parameters
[T Pixhawk PX4 FlightController
2 PX4&RSOSIntegration
13 Overview of how HOGworky i ..
14 Components used and their prices (percopter)

[0 [O7 [[TY [C7] [] [] [N] [

Appendix: Code Snippets

Sourcing ROS Environmentvariables
Intializing catking workspace Lo
CreatingaROSPackage e
Listing ROSNodes e e e e
ROS Node Information e e
RunningaROSNodg e
Sample ROSNode Code InC+H i it
Buildingand Runningournode e e
Sample MAVLINk Message e e e e e e
Custom MAVLINk Message @ i i e e e e e
PX4 ROS Launch FileSamplg
ROS Topic Information e
Video Capture SampleCode e
HOG Implementation usingOpenCV

RIRIRIERIEREEBDIIEDIEeIEeEnss
B W N |- O

33

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

Acharya, T., and Ray, A. Image Processing: Principles and Applications. Wiley, 2005.

Adams, A., Schmidt, T., Newgard, C., Federiuk, C., Christie, M., Scorvo, S., and DeFreest, M.
Search is a time-critical event: when search and rescue missions may become futile. Wilder-
ness & Environmental Medicine 18 (2007), 95--101.

Baranov, |. Clearpath Robotics: ROS 101, Mar. 2014. http://www.clearpathrobotics.com/
blog/ros-101-drive-husky/.

Barr, A. Amazon testing delivery by drone, ceo bezos says. Retrieved April 22 (2013), 2014.

Bohren, J. Building Modular ROS Packages, Feb. 2014. http://jbohren.com/articles/
modular-ros-packages/.

Conley, K. ROS Documentation: Concepts, Sept. 2009. http://wiki.ros.org/R0S/Concepts.

Dalal, N., and Triggs, B. Histograms of oriented gradients for human detection. In Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference
on (2005), vol. 1, IEEE, pp. 886--893.

Fabio, A. Droning On: Choosing a Flight Controller, June 2014. http://hackaday.com/2014/
06/06/droning-on-flight-controller-round-up/.

How Things Fly. Roll, Pitch, and Yaw. https://howthingsfly.si.edu/flight-dynamics/
roll-pitch-and-yaw.

Laplace, J. Robot Operating System Overview, Nov. 2011. http://generationrobots.
developpez.com/tutoriels/presentation-robot-operating-system/.

Parker,). Algorithms for Image Processing and Computer Vision. IT Pro. Wiley, 2010.
Pixhawk. Pixhawk PX4 Specifications. https://pixhawk.org/modules/pixhawk.

Posen, B. R. Command of the commons: the military foundation of us hegemony. Interna-
tional Security 28, 1 (2003), 5--46.

QGroundControl. Creating a MAVLink Message. http://qgroundcontrol.org/mavlink/
create_new_mavlink_message.

QGroundControl. Ground Control Station for Small Air| Water| Land autonomous unmanned
vehicles. http://qgroundcontrol.org/.

Quadrelli, M., McHencry, M., Wilcox, B., Hall, J., Volpe, R., Nesnas, |., Nayar, H., Backes, P,,
Mukherjee, R., Matthies, L., Zimmerman, W., and Mittman, D. Guidance, navigation, and
control technology assessment for future planetary science missions. Planetary Science Pro-
gram Support Task, National Aeronautics and Space Administration (2013), i--10.

34

http://www.clearpathrobotics.com/blog/ros-101-drive-husky/
http://www.clearpathrobotics.com/blog/ros-101-drive-husky/
http://jbohren.com/articles/modular-ros-packages/
http://jbohren.com/articles/modular-ros-packages/
http://wiki.ros.org/ROS/Concepts
http://hackaday.com/2014/06/06/droning-on-flight-controller-round-up/
http://hackaday.com/2014/06/06/droning-on-flight-controller-round-up/
https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw
https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw
http://generationrobots.developpez.com/tutoriels/presentation-robot-operating-system/
http://generationrobots.developpez.com/tutoriels/presentation-robot-operating-system/
https://pixhawk.org/modules/pixhawk
http://qgroundcontrol.org/mavlink/create_new_mavlink_message
http://qgroundcontrol.org/mavlink/create_new_mavlink_message
http://qgroundcontrol.org/

[17] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. Ros:
an open-source robot operating system. In ICRA workshop on open source software (2009),
vol. 3, p. 5.

[18] Saito, I. ROS Documentation: RQT Console, Sept. 2012. http://wiki.ros.org/rqt_console.
[19] Saito, I. ROS Documentation: RQT Graph, Sept. 2012. http://wiki.ros.org/rqt_graph.
[20] Saito, I. ROS Documentation: RQT Plot, Sept. 2012. http://wiki.ros.org/rqt_plot.

[21] Wise, M. ROS Documentation: Understanding Nodes, Aug. 2009. http://wiki.ros.org/
ROS/Tutorials/UnderstandingNodes.

35

http://wiki.ros.org/rqt_console
http://wiki.ros.org/rqt_graph
http://wiki.ros.org/rqt_plot
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

	Challenge
	Description
	Motivation
	Requirements
	Importance

	Solution
	Concept & Desired Solution
	Proposed Solution
	Project Components
	Project Sub-Components
	Changes from Original Solution
	Innovation

	Performance Evaluation
	Measures to meet challenge needs
	Performance Measure Matrix for Sub-systems
	Performance Evaluation
	Evaluation Summary

	Technical Documentation
	Software Architecture
	ROS: Overview
	ROS Nomenclature
	Why ROS?
	Using ROS

	Network Infrastructure & Setup
	One-to-One WiFi Network
	WiFi Mesh Network

	Flight Controllers
	PixHawk PX4

	Multirotor Airframe & Power Systems
	Power Systems
	Propellers
	Motors
	Power Supply

	Image Processing
	Basic Image Processing: Capturing video from camera
	Human Detection: Histograms of Oriented Gradients

	Project Execution
	Challenges in Project
	Risks & Mitigations
	Peer Reviews
	Component List and Budget

	Recommendations & Next Steps

