
Arizona State University

Intel-Cornell Cup

2015

Autonomous Disaster Relief Agents (ADRA)

Supervisor:
Dr. Yinong Chen

Author:
Vageesh Bhasin
David Ingraham

Sami Mian

April 20, 2015

Abstract

In a disaster situaࢢon, such as stranded tourists & hikers, idenࢢfying & locaࢢng them, and
delivering essenࢢal survival supplies becomes a task of utmost importance for first-responders1,
like EMS2 personnels. The project aims at developing a tool that will support the current
search & rescue operaࢢon, as well provide a mechanism for delivering packages in a safe and
melyࢢ manner.

The soluࢢon is to build a network of inter-communicaࢢng copters that will be responsible
for surveying an area, finding posiࢢons of potenࢢal targets and dropping packages near them.
For demonstraࢢon purposes, we will be building a network of 2 copters, one responsible for
surveillance and the other for delivery. The 2 copters will be in constant communicaࢢonwith a
base camp, thatwill be doing all the heavy computaࢢonal processes, such as humandetecࢢon,
flight control & navigaࢢonal commands, etc. (explained further).

1First people to arrive at and assist in a scene of emergency
2Emergency Medical Services

1

Contents

1 Challenge 4
1.1 Descripࢢon . 4
1.2 Moࢢvaࢢon . 4
1.3 Requirements . 4
1.4 Importance . 5

2 Soluࢢon 5
2.1 Concept & Desired Soluࢢon . 5
2.2 Proposed Soluࢢon . 5
2.3 Project Components . 7
2.4 Project Sub-Components . 7
2.5 Changes from Original Soluࢢon . 8
2.6 Innovaࢢon . 8

3 Performance Evaluaࢢon 9
3.1 Measures to meet challenge needs . 9
3.2 Performance Measure Matrix for Sub-systems 10
3.3 Performance Evaluaࢢon . 11
3.4 Evaluaࢢon Summary . 11

4 Technical Documentaࢢon 11
4.1 So[ware Architecture . 11

4.1.1 ROS: Overview . 11
4.1.2 ROS Nomenclature . 11
4.1.3 Why ROS? . 13
4.1.4 Using ROS . 13

4.2 Network Infrastructure & Setup . 19
4.2.1 One-to-One WiFi Network . 19
4.2.2 WiFi Mesh Network . 21

4.3 Flight Controllers . 22
4.3.1 PixHawk PX4 . 23

4.4 Mulࢢrotor Airframe & Power Systems . 26
4.4.1 Power Systems . 26
4.4.2 Propellers . 26
4.4.3 Motors . 26
4.4.4 Power Supply . 26

4.5 Image Processing . 27
4.5.1 Basic Image Processing: Capturing video from camera 27
4.5.2 Human Detecࢢon: Histograms of Oriented Gradients 28

2

5 Project Execuࢢon 30
5.1 Challenges in Project . 30
5.2 Risks & Miࢢgaࢢons . 30
5.3 Peer Reviews . 31
5.4 Component List and Budget . 32

6 Recommendaࢢons & Next Steps 32

3

1 Challenge

1.1 Descripࢢon
First-responders are faced with a challenging task of locaࢢng, rescuing and providing necessary
aides to vicࢢms of a disaster. Even if the responders have necessary resources, delivering them in
a safe and melyࢢ manner poses a challenge in itself. This is especially true in the case of stranded
hikers and visitors of beauࢢful landscapes and tourist spots in Arizona. Besides this, there is a
probability of delay in a rescue operaࢢon due to unforeseen and unavoidable circumstances, such
as harsh weather and hazardous terrain.

The project aims at tackling the problem in hand, by providing the first-responders with a tool
that will allow them to safely survey an area, locate vicࢢms and deliver essenࢢal supplies. Thus,
helping the vicࢢm llࢢ the meࢢ a rescue team reaches them. This will be achieved with a network
of quadcopters3, having two different (inter-changeable) roles. One set of copters will be respon-
sible for surveying an area and idenࢢfying potenࢢal targets, whereas the second set of copters
will be responsible for delivering the supply package.

1.2 Moࢢvaࢢon
Weare avid nature lovers and frequently hike the scenic Arizona landscapes, including forests, hills
andmountains. News about stranded hikers is very common, and given the scorching heat and di-
verse terrain in Arizona, rescuing these hikers becomes a difficult job for the EMS personnel. Due
to the heat, dehydraࢢon can come quickly, therefore a quick response is of essence. Someࢢmes,
the only rescue opࢢon is via a helicopter, which requires preparaࢢon and even longer execuࢢon
.meࢢ

The above reasonsmade us think about devising amethod to help these vicࢢms&personnels. Our
intended goal is to support the current search & rescue operaࢢon, and provide a way of delivering
essenࢢal supplies to the vicࢢms unࢢl the EMS personnels reach them.

1.3 Requirements
To support the search operaࢢon, we require the tool to be quick to assemble & deploy, and should
be able to survey & locate the vicࢢms quickly. The other criteria essenࢢal for the tool to be suc-
cessful involves a mechanism to deliver packages safely & quickly. Even if the tool is autonomous4
or semiautonomous5, we want human judgment to have significant impact, allowing it to over-
ride the default tool behavior. Last, but not the least, we want the soluࢢon to leverage available
resources for communicaࢢon and at the same meࢢ not be fully dependent on them. The solu-
onࢢ should be able to switch between network protocols so as to keep the dependency at it's
minimum.

3A mulࢢ-rotor helicopter, uses four propellers to le[and propel
4Having the power to govern itself
5Largely self governing within an bigger enࢢty

4

1.4 Importance
In a retrospecࢢve cohort study of search & rescue operaࢢons (conducted in the state of Oregon),
it was observed that out of 1040 searches in the period 1997-2000, involving 1509 vicࢢms, 70
(4.6 %) of them died. In the same study, out of 1262 searches in the period 2001-2013, involving
1778 vicࢢms, 115 (6.5 %) of them died. On an average, the search & rescue meࢢ was 18.5 hours
(1997-2000) and 19.75 hours (2001-2003).[2]

The above informaࢢon is relevant to our cause, because the tool not only allows for quicker
response, but also provides wider coverage by deploying mulࢢple copters. The impact of the
tool will save countless lives, as well as help in making the SAR operaࢢon efficient and less meࢢ
consuming.

2 Soluࢢon

2.1 Concept & Desired Soluࢢon
Given the challenge in hand, the soluࢢon is required to perform three important tasks:

1. Survey & Locate vicࢢms: The soluࢢon (or a component of it) should be able to survey a
designated area and idenࢢfy potenࢢal vicࢢms that require rescuing. A good soluࢢon should
be able to carry out this task in an efficient manner so as to keep the surveillance meࢢ as
minimum as possible.

2. Relay vicࢢm coordinates: Once the vicࢢms are idenࢢfied, the soluࢢon(or a component of
it) should provide the posiࢢons of the vicࢢm to the base camp6. A good soluࢢon should
then conࢢnue surveying the area for locaࢢng other targets.

3. Deliver supply package: Finally, when the posiࢢon coordinates of the vicࢢms are received
by the base camp, the soluࢢon(or a component of it) should deliver its payload7(which may
contain communicaࢢon aides, food packets, medical supplied, etc.). A good soluࢢon should
deliver this package quickly and at a safe & reachable distance from the vicࢢms.

Each of the above tasks are equally valuable towards the mission's success. However, the last
2 tasks rely heavily on the first task. Therefore, a good soluࢢon should allow deploying mulࢢple
sub-components to boost the first task execuࢢon.

2.2 Proposed Soluࢢon
Keeping the desired soluࢢon inmind, our project leverages aerial capabiliࢢes of quadcopters(discussed
in XYZ) for surveying an area and delivering packages, and processing capabiliࢢes of the Intel-Atom
processor for idenࢢfying humans from sensory data, as well as providing navigaࢢonal commands
to the quadcopters.

6A camp from where SAR acࢢviࢢes are coordinated
7Package carried by a vehicle

5

A high-level overview of the system work-flow can be described as follows:

1. Assembly&Deployment - The system soluࢢon is transported to the disaster locaࢢon, where
it is assembled and a base camp is established.

2. Surveillance - A quadcopter is deployed with a target desࢢnaࢢon. It's main responsibility is
to survey within a circular radius from the target posiࢢon and gather imagery data. It should
be able to use pre-planned navigaࢢonal techniques to completely comb it's designated area.
The gathered data should be relayed back to the base camp for further processing.

3. Image Data Processing - The imagery data from the quadcopter is processed by the master
node(located at the base camp), which uses Image Processing techniques to detect humans
from the data. A good soluࢢon should be able to detect humans with high accuracy and low
computaࢢonal .meࢢ

4. Delivery - Once potenࢢal targets have been idenࢢfied and ascertained, a second quadcopter
carrying a payload of either communicaࢢon aides or medical supplies or food packets is
deployed. This copter flies directly to the target locaࢢon and drops off the package near the
vicࢢms.

Figure 1: A flow diagram showing the work-flow of the system soluࢢon

6

2.3 Project Components
We've taken a modular approach towards developing our proposed soluࢢon, so that it is easier
to understand and build. Listed below are the components of the project and their descripࢢon of
role responsibiliࢢes:

1. Quadcopters:
Surveillance Copter - This copter will be responsible for surveying an area and gathering

images of that area. This data will be sent back to the base camp in real-ࢢme for further
processing.

Delivery Copter - This copter will be responsible for delivering the payload at the target
locaࢢon.

2. Base Camp:
The base campwill be powered by the Intel-Atom processor, and it's main responsibility

includes processing & extracࢢng objects from the relayed imagery data, providing naviga-
onalࢢ commands, and dispatching the delivery copter to target locaࢢon.

2.4 Project Sub-Components
Furthermore, we've divided the above menࢢoned components into 3 sub-components, as de-
scribed below:

1. Hardware & Communicaࢢons - This sub-component deals with selecࢢon of hardware ma-
terials, building the copters and seࢰng up communicaࢢon infrastructure.

Hardware Selecࢢon & Design - Hardware components were selected on the following
criteria: availability, reliability, and quality, ease of use and integraࢢon, and cost. A[er the
selecࢢon process, design analysis is carried out for determining a suitable design in terms
of ease of manufacturing/assembling, and stability and reliability.

Communicaࢢons - Communicaࢢon systems are the backbone of creaࢢng a network of
intercommunicaࢢng robots. Since the copters have minimal compuࢢng power, for decision
making, communicaࢢon systems become very important. Having conࢢnuous communica-
onࢢ channel between the copters and the base camp is of utmost importance. An opࢢmal
communicaࢢon system should be able to handle mulࢢple channels and be broad enough to
accommodate heavy data transfer.

Power Systems - The copters are designed to have a powermonitoringmodule. Conࢢn-
uous monitoring of power consumpࢢon, as well as decision making in low power scenarios
will be taken care of by the base camp.

2. So[ware&Algorithms - This sub-component dealswith navigaࢢonal algorithms, image pro-
cessing and interface development.

Aࢰtude Control - Aࢰtude esࢢmaࢢon and control deals with determining the orienta-
onࢢ of the copter with respect to it's surrounding environment. Because of the unknown
nature of the environment, the copter and it's system should be robust enough to not allow
external forces to modify it's orientaࢢon and posiࢢon.

7

Guidance & Navigaࢢon - For an aerial vehicle, Guidance 8 & Navigaࢢon9 refers to plan-
ning, sensing and controlling the moࢢon of the vehicle to arrive at a target. One of the
major challenges is to determine an opࢢmal path for saving meࢢ and energy. For the pur-
pose of the compeࢢࢢon, the project aims at developing the system to navigate in an open
environment10.

Image Processing - Image Processing refers to the signal processing of images for either
obtaining another image or extract a set of characterisࢢcs. Visual sensors, such as video
cameras, would bemounted on the surveillance copter for acquiring image data for analysis.
The datawill be processed at the base camp to extract key descriptors for detecࢢng humans.

3. Modeling & Simulaࢢon - Before actual implementaࢢon of all the algorithms, it is very im-
portant to have a running simulaࢢon of the system for tesࢢng and analyࢢcal purposes. Us-
ing open-source simulaࢢon packages, we've created simulaࢢon to demonstrate the project
funcࢢoning.

2.5 Changes from Original Soluࢢon
At the meࢢ of concepࢢon, the soluࢢon was aimed at being fully-autonomous. As we progressed
further with our concept, we conducted interviews with the EMS personnels who are the main
users for our soluࢢon. It was evident from their feedback, that a fully-autonomous soluࢢon is not
desired, and a human operator should act as the administrator of the system soluࢢon. Therefore,
we have shi[ed our focus on developing a semi-autonomous soluࢢon, where the copters and the
base camp will do all the surveying and processing, but a human operator will be responsible for
the final decision, which includes, verifying detected humans and delivery copter dispatch.

2.6 Innovaࢢon
Using drones for the purpose of surveillance or dispatch is not new. Drones have been usedwidely
by U.S. Military for reconnaissance usage as well as lethal usage[13]. Drones have also been used
for commercial purposes, such as Amazon Prime Air[4].

However, the novel aspect of our soluࢢon is to combine the two usages and provide an inte-
grated soluࢢon for supporࢢng relief acࢢviࢢes. Our soluࢢon is modular and inter-changeable in
nature. In other words, each component is built keeping modularity in mind. The payloadmodule
provides mulࢢple opࢢons, and can be customized as per the need of the mission. Secondly, the
copters are built keeping mulࢢ-purpose uࢢlity in mind. A delivery copter can be switched into a
surveillance copter just by adding the image module.

While developing andworking on our iniࢢal concept, we've realized that the abovemenࢢoned
strengths will allow us to use the soluࢢon across mulࢢple scenarios. Some of the uses, besides
our main target use, include:

• Agricultural Use - Using drones to check for incests and pests on a field, and spraying chem-
icals to counter them.

8The determinaࢢon of the desired path of travel from the vehicle's current locaࢢon to the designated target[16]
9The method of determining the posiࢢon, course and distance traveled[16]
10An environment where density of obstacles is less

8

• Media Arrangements - Using drones to shoot videos across funcࢢons, like graduaࢢon con-
vocaࢢons &wedding arrangements, and deliver important packages, like graduaࢢon speech
le�ers & wedding rings or vows, respecࢢvely.

3 Performance Evaluaࢢon

3.1 Measures to meet challenge needs
Given the challenge requirements, an opࢢmal soluࢢon should adhere to the following measure
properࢢes and fit the target goal:

Criteria Descripࢢon Target Goal
Assembly Time taken to assemble the

system at target site
The system should be assem-
bled at the target locaࢢon
within XXX minutes.

Deployment & Data Gathering Time taken for a component
to be deployed from base
camp & gather input data for
processing

The system should be able to
deploy a component within
XXX minutes and gather im-
age data for processing.

Detecࢢon Accuracy Accuracy of idenࢢfying and
detecࢢng humans from the
image data

The system should be able to
detect humans with at least
XXX accuracy and within XXX
milliseconds.

Delivery Time taken to drop off the
payload and the quality of
payload at the target

The system should drop the
payload without any dam-
ages to it.

Table 1: Challenge Meeࢢng Measures

9

3.2 Performance Measure Matrix for Sub-systems
To a�ain overall goal for an opࢢmal soluࢢon, we set out a performance measure matrix for our
sub-systems as below:

Sub-system Property Name Property Criteria Target Goal
Aࢰtude Control Posiࢢon Hold Should be able to hold it's posiࢢon

for at least target meࢢ
>2 minutes

Navigaࢢon
Deployment Should be able to deploywithin tar-

get meࢢ
<2 minutes

ETA Should be able to arrive at it's
target locaࢢon(a) within target
me(b)ࢢ

(a) 500 meters
(b) 5 minutes

Object avoidance Should be able to avoid obstacles
on it's flight path

Communicaࢢons Network Channel Should be able to communicate
constantly on the network

Data Transfer Should be able to transfer data
(telemetry & image) with at least
target transfer accuracy

95%

Power Power Monitoring Should be able to monitor power
consumpࢢon and esࢢmated re-
maining power

Low Power Should be able to alert the opera-
tor in case of low power than target
threshold

20%

Image Processing Detecࢢon Accuracy Should be able to detect humans in
a frame with at least target accu-
racy

90%

Computaࢢon Time Should be able to detect humans in
a frame within target meࢢ

200ms

Table 2: Subsystem Performance Measure Matrix

10

3.3 Performance Evaluaࢢon
A[er development of the subsystems, we tested them according to the matrix stated in Secࢢon
3.2. The below table represents the results:

Figure 2: Subsystem performance evaluaࢢon

4 Technical Documentaࢢon
The technical documentaࢢon secࢢon has been designed to outline the components used in the
soluࢢon. A descripࢢon of the component and it's sub-components have been provided, in an
a�empt to guide a reader towards replicaࢢng the soluࢢon.

4.1 So[ware Architecture

4.1.1 ROS: Overview

The project uses ROS11 as its underlying architecture for creaࢢng a network of nodes, where each
node is responsible for a certain task. ROS is an operaࢢng system (not a tradiࢢonal OS) that pro-
vides a structured communicaࢢons layer for a heterogeneous12 compute cluster13[17].

It provides hardware abstracࢢon, low-level device control, implementaࢢon of commonly-used
funcࢢonality, message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, wriࢢng, and running code across mulࢢple computers

4.1.2 ROS Nomenclature

A system built using ROS consists of a number of processes connected at runࢢme in a peer-to-peer
topology. These processes are analogous to system modules, and are called nodes. A system is
typically comprised of many nodes.[17]

11Robot Operaࢢng System
12Diverse in character
13Loosely or ghtlyࢢ coupled computers performing a specific task

11

Nodes communicate via passing a data structure, known asmessages. A message is a a strictly
typed data structure. Standard primiࢢve types (integer, floaࢢng point, boolean, etc.) are sup-
ported, as are arrays of primiࢢve types and constants. Messages can be composed of other mes-
sages, and arrays of other messages.[17]

These nodes communicate with each other using special communicaࢢon channels known as
topics. A node that wants to send a message "publishes" it on a specific topic. A node that is
interested in a certain kind of datawill "subscribe" to the appropriate topic. Theremay bemulࢢple
concurrent publishers and subscribers for a single topic, and a single node may publish and/or
subscribe to mulࢢple topics.

Services are another way that nodes can communicate with each other. Services allow nodes
to send a request and receive a response.

Bags are a format for saving and playing back ROSmessage data. Bags are an important mech-
anism for storing data, such as sensor data, that can be difficult to collect but is necessary for
developing and tesࢢng algorithms[6].

Figure 3: High level overview of ROS Architecture[10]

12

4.1.3 Why ROS?

ROS is open-source, easily deployable on embedded systems pla�orms and has a big community.
Besides these, the below technical specificaࢢons are some of the reasons that convinced us to
select ROS over other pla�orms (such as Microso[Roboࢢcs Developer Studio, Naoqi and URBI)
[17]:

• Peer-to-Peer - ROS allows to visualize and use components in a system as individual nodes,
that communicate with each other via a communicaࢢon layer provided by ROS.

• Mulࢡ-Lingual - ROS is language-neutral. ROS currently supports the following different lan-
guages: C++, Python, JAVA, Lua, and LISP.

• Tool-based - A large number of small tools are used to build and run the various ROS compo-
nents, rather than construcࢢng amonolithic development and runࢢme environment. These
tools perform various tasks, e.g., navigate the source code tree, get and set configuraࢢon
parameters, visualize the peer-to-peer connecࢢon topology, measure bandwidth uࢢlizaࢢon,
graphically plot message data, auto-generate documentaࢢon, etc.

• Thin - The ROS build system performs modular builds inside the source code tree, and it's
use of CMake makes it comparaࢢvely easy to follow this “thin” ideology.

• Free & Open-Source - The full source code of ROS is publicly available. ROS is distributed
under the terms of the BSD license, which allows the development of both non-commercial
and commercial projects.

4.1.4 Using ROS

4.1.4.1 ROS File-system

The file-system describe the hierarchy of components within the ROS system, and are described
below[6]:

• Packages - Packages are themain unit for organizing so[ware in ROS. A packagemay contain
ROS runࢢme processes (nodes), a ROS-dependent library, datasets, configuraࢢon files, or
anything else that is usefully organized together. Packages are the most atomic build item
and release item in ROS. Meaning that the most granular thing you can build and release is
a package.

• Metapackages - Metapackages are specialized Packages which only serve to represent a
group of related other packages.

• Package Manifests - Manifests (package.xml) provide metadata about a package, including
it's name, version, descripࢢon, license informaࢢon, dependencies, and other meta informa-
onࢢ like exported packages.

13

• Repositories - A collecࢢon of packages which share a common VCS14 system. Packages
which share a VCS share the same version and can be released together using the catkin15
release automaࢢon tool.

• Message (msg) types - Message descripࢢons define the data structures for messages sent
in ROS.

• Service (srv) types - Service descripࢢons define the request and response data structures
for services in ROS.

4.1.4.2 ROS Configuraࢢon & Management

ROS (current stable version Indigo) can easily be downloaded and installed for it's supported plat-
forms from the following download link.

A[er installing ROS, we need to setup environment variables to be used by ROS. This can be
accomplished by issuing the following command:

1 # source / opt / ro s / < d i s t r o >/ se tup . bash
2

3 $ source / opt / ro s / i n d i g o / se tup . bash

Snippet 1: Sourcing ROS Environment variables

ROS uses catkin as it's workspace manager and build tool. To create a catkin workspace, use
the following command:

1 $ mkdir −p ~/ ca t k i n_ws / s r c
2 $ cd ~/ ca t k i n_ws / s r c
3 $ c a t k i n _ i n i t _wo r k s p a c e

Snippet 2: Iniࢢalizing catking workspace

Once the catkin workspace is iniࢢalized, you can download repositories and build them using
catkin_make command.

4.1.4.3 Building our ROS Package

Bundling everything within a package is advantageous in many aspects. ROS packages draw it's
strengths from the modular approach used by it's creators. Modularity, in this case, comes in the
form of building specific funcࢢonality into libraries which can be used by other packages[5]. As a
good habit, all use packages should be built within the src folder of catkin workspace.

A typical catkin package consists of the following items:

• package.xml - Contains the package meta informaࢢon.

• CMakeLists.txt - Input file for the CMake build system for building so[ware packages.
14Version Control System
15A build system, responsible for generaࢢng 'targets' from raw source code that can be used by an end user

14

http://wiki.ros.org/ROS/Installation

Catkin allows a shorthand command for building the boilerplate16 of a ROS package. To create
a package, you can use the following command:

1 # c a t k i n _ c r e a t e _ p k g <package_name > [depend1] [depend2] [depend3]
2 $ c a t k i n _ c r e a t e _ p k g adra std_msgs rospy roscpp

Snippet 3: Creaࢢng a ROS Package

The above command will create a package named adra, which will have dependencies on the
following packages std_msgs, rospy and roscpp. A[er creaࢢng our package, we can write our
custom library code within this directory, and build it using catkin_make.

4.1.4.4 Creaࢢng our Nodes

A node a simple executable file within the ROS package. They use ROS client libraries to publish
messages on topics, or subscribe to receive messages from topics. Nodes can also be used as
service providers or can invoke services.

Before creaࢢng and running our nodes, ROS requires us to run a couple of prerequisite pro-
cesses, which can be done using the roscore command. This command invokes and starts the ROS
Master17, ROS Parameter Server18 and rosout logging node19.

ROS provides some commands which can help in viewing running nodes[21]:

• rosnode list - Displays a list of acࢢve node
1 $ rosnode l i s t
2 # Output w i l l be l i k e :
3 # / ro sou t

Snippet 4: Lisࢢng ROS Nodes

• rosnode info <node_name> - Displays the informaࢢon about a specific node
1 $ rosnode i n f o / ro sou t
2 # Output w i l l be l i k e :
3 # −−−
4 # Node [/ ro sou t]
5 # P u b l i c a t i o n s :
6 # * / ro sou t_agg [rosgraph_msgs / Log]
7

8 # S u b s c r i p t i o n s :
9 # * / ro sou t [unknown type]
10

11 # S e r v i c e s :
12 # * / ro sou t / s e t _ l o g g e r _ l e v e l
13 # * / ro sou t / g e t _ l o g g e r s

Snippet 5: ROS Node Informaࢢon

16Piece of code that can be reused in new applicaࢢons as a template
17Provides naming and registraࢢon services for nodes
18A shared, mulࢢ-variate dicࢢonary that is accessible via network APIs
19A system wide logging node

15

• rosrun [package_name] [node_name] - Runs a specific node within a ROS package
1 $ ro s run adra adra_master
2 # Runs the node " adra_master " w i t h i n the package " adra "
3

4 # Running node l i s t command now w i l l l i s t a new node
5 $ rosnode l i s t
6 # Output w i l l be l i k e :
7 # / ro sou t
8 # / adra_master

Snippet 6: Running a ROS Node

A[er learning how to view ROS nodes, it's meࢢ to create a sample node:
1 / / I n c l u d e the ROS C++ AP I s
2 # i n c l u d e < ro s / ro s . h>
3

4 / / I n c l u d e f i l e d e c l a r a t i o n s
5 # i n c l u d e < adra / sample_node . h>
6

7 i n t main (i n t argc , cha r ** a rgv) {
8

9 / / I n i t i a l i z e ROS node named " adra_sample_node "
10 r o s : : i n i t (a rgc , argv , " adra_sample_node ") ;
11 r o s : : NodeHandle nh ;
12

13 / / DO WORK
14

15 / / Wait f o r S IG INT / C t r l−C
16 r o s : : s p i n () ;
17 r e t u r n 0 ;
18 }

Snippet 7: Sample ROS Node Code in C++

Once you save the code for the node, we need to build it and run it.
1 # Don ' t f o r g e t to update the CMakeL i s t s . t x t to i n c l u d e our newly c r ea t ed f i l e
2 $ catk in_make
3

4 $ ro s run adra adra_sample_node

Snippet 8: Building and Running our node

16

4.1.4.5 ROS Tools

One of most important driving factor behind choosing ROS is it's rich package repositories and
community. We use rqt extensively since it's a so[ware framework that implements and inte-
grates various available GUI tools in the form of plugins.

Some of the plugins that we find valuable are:

• Node Graph [rqt_graph] - A plugin to visualize the ROS Computaࢢon graph20.

Figure 4: GUI for rqt_graph[19]

• Process Monitor [rqt_top] - A plugin to monitor ROS processes.

• Console [rqt_console] - A plugin that displays and allows filtering of ROS messages.

Figure 5: GUI for rqt_console[18]

• Message Type Browser [rqt_msg] - A plugin for introspecࢢng available ROS message type.
20Peer-to-peer network of ROS processes that are processing data together

17

• Topic Monitor [rqt_topic] - A plugin for displaying debug informaࢢon about ROS topics in-
cluding publishers, subscribers, publishing rate, and ROS Messages.

• Plot [rqt_plot] - A plugin for visualizing data values in a 2D plot.

Figure 6: GUI for rqt_plot[20]

Besides the abovemenࢢoned plugins, we also useGazebo for our simulaࢢon purpose. Gazebo
allows us to accurately and efficiently simulate populaࢢons of robots in complex indoor and out-
door environments. ROS allows integraࢢon with Gazebo using the gazebo_ros_pkgs, which is a
set of packages that provide wrapper classes around Gazebo.

Figure 7: GUI for Gazebo[3]

18

4.2 Network Infrastructure & Setup
Establishing communicaࢢon network for data transfer is one of the key areas for a successful solu-
.onࢢ An opࢢmal soluࢢon for this component should be able to maintain the network for long dis-
tance usage. The data channel should be broad enough for sending/receiving image data. While
developing the project, we had 2 broad implementaࢢon ideas/concepts, which we have discussed
below. Due to meࢢ & resource limitaࢢons, we could only implement a communicaࢢon network
over a one-to-one WiFi network.

4.2.1 One-to-One WiFi Network

One of the original ideas for connecࢢng the quadcopters together was using WiFi to link each
robot with the monitoring staࢢon. The WiFi connecࢢon is important because it will allow the
quads to transmit large bandwidth video and images (preferable HD) back to the staࢢon for video
processing.

Theunderlying protocol for communicaࢢonused in this kind of networkwasMAVLink21. MAVLink
is a very lightweight, header-only message marshaling library for micro air vehicles. It can pack
C-structs over serial channels with high efficiency and send these packets to the ground control
staࢢon. It is extensively tested and used on mulࢢple drone pla�orms, such as the PX4, PIXHAWK,
APM and Parrot AR-Drone. It serves as their communicaࢢon backbone for theMCU/IMU commu-
nicaࢢon as well as for Linux interprocess and ground link communicaࢢon[14].

Messages are transmi�ed over MAVLink as XML data structures, which are then converted
into C/C++, Python or C# Code using generators. A definiࢢon of a simple MAVLink message is
given below:

1 <message i d = " 0 " name= "HEARTBEAT " >
2 < d e s c r i p t i o n >< / d e s c r i p t i o n >
3 < f i e l d type = " u i n t 8 _ t " name= " type " >< / f i e l d >
4 < f i e l d type = " u i n t 8 _ t " name= " a u t o p i l o t " >< / f i e l d >
5 < f i e l d type = " u i n t 8 _ t " name= " base_mode " >< / f i e l d >
6 < f i e l d type = " u i n t 3 2 _ t " name= " custom_mode " >< / f i e l d >
7 < f i e l d type = " u i n t 8 _ t " name= " s y s t em_s t a t u s " >< / f i e l d >
8 < f i e l d type = " u i n t 8 _ t _ma v l i n k _ v e r s i o n " name= " mav l i n k _ v e r s i o n " >< / f i e l d >
9 < / message >

Snippet 9: Sample MAVLink Message

Descripࢢon of the message fields are as follows:

• Descripࢢon - The heartbeat message shows that a system is present and responding. The
type of the MAV and Autopilot hardware allow the receiving system to treat further mes-
sages from this system appropriate (e.g. by laying out the user interface based on the au-
topilot).

• Type - Type of the MAV (quadrotor, helicopter, etc., up to 15 types).

• Autopilot - Autopilot Type / Class.

• Base Mode - System Mode.
21Micro Air Vehicle Communicaࢢon Protocol

19

• CustomMode - Navigaࢢon Mode.

• System Status - System Status flag.

• Mavlink Version - Version of the MAVLink protocol

MAVLink also allows us to define our own custom message fields. It is advisable to organize
our custom fields into a single message definiࢢon file. An example of custom fields is given below:

1 <messages >
2 <message i d = " 150 " name= "QUAD_RAW" >
3 < d e s c r i p t i o n > T h i s message encodes a l l o f the custom data f o r our UAV . < /

d e s c r i p t i o n >
4 < f i e l d type = " u i n t 1 6 _ t " name= " p o s i t i o n " >< / f i e l d >
5 < f i e l d type = " u i n t 8 _ t " name= " p o r t _ l i m i t " >< / f i e l d >
6 < f i e l d type = " u i n t 8 _ t " name= " c e n t e r _ l i m i t " >< / f i e l d >
7 < f i e l d type = " u i n t 8 _ t " name= " s t a r b o a r d _ l i m i t " >< / f i e l d >
8 < / message >
9 < / messages >

Snippet 10: Custom MAVLink Message

MAVLink also has bridge for ROS developed by the ETH PIXHAWK team, known as MAVROS.
The bridge translates between UART/serial ports and UDP links transporࢢng MAVLink and a ROS
instance on the computer.

Integraࢢng MAVLink(via MAVROS) is non-intrusive, i.e., it does not need to become a central
part of the on-board architecture on our quadcopter. It provides parameter and way-point han-
dles, which are read by the autopilot from the appropriate data structures. Since it is a header-only
library, we do not have to compile it. A typical MAVLink flow is described below:

Figure 8: MAVLink Communicaࢢon Flow

20

4.2.2 WiFi Mesh Network

One-to-One WiFi network is easy to setup and integrate with our ROS environment. However,
there are a few limitaࢢons with this method, the biggest being the strength of the WiFi signal and
interference from other sources limiࢢng the distance the quads can travel while sustaining the
connecࢢon.

Another approach towards countering the range problem is to uࢢlize aWiFimesh network. In a
WiFimesh design, each quadcopter would act as an access point within a network, and each quad-
copter would be connected to the others via WiFi and each other. For extremely large swarms of
quads, one or two quads can be included that just act as large access points with strong antennas,
just like network hubs in a LAN network.

The WiFi mesh network will be implemented using the IEEE 802.11s protocol. This protocol is
an 802.11 amendment specifically created for mesh networking. It defines how wireless devices
are able to connect together, creaࢢng a Wide Local Area Mesh Network (WLAN Mesh), which in
this case would be a large ad-hoc network.

In this parࢢcular mesh network, each quadcopter will be idenࢢfied by a pre-assigned staࢢc IP
address, which will be managed by a router connected to the base staࢢon, run by the Intel Altera
board provided by the compeࢢࢢon. Each quad has a 802.11s capable WiFi adapter, which will
allow each quad to become a WiFi access point. On-board so[ware will manage the quadcopters
connecࢢons to the other robots, acࢢvely searching for others which are in range and trying to
connect to them. Each quadcopter will have its own object in the Robot Operaࢢng System (ROS)
project, and all communicaࢢon between the quads will be handled by a separate program, which
will receive inputs from the ROS algorithms.

Figure 9: WiFi Mesh Network

21

As stated before, the primary purpose for this implementaࢢon will be in order to extend the
range of the quadcopters. The base staࢢon will be able to decide which quads will be able to relay
back video data. The quadcopters which are out of range from the base staࢢon will send their
video data through a string of access points on closer quads unࢢl it reaches the base staࢢon. The
data connecࢢon path for each of the quadcopters will be determined by the base staࢢon every
meࢢ a new access point is added to the network, just as is done in a DHCP network by a router.

A diagram depicࢢng the WiFi Mesh network is given in fig. 8. The solid arrows represent
direct connecࢢons between quadcopters and the base staࢢon. The do�ed lines represent the
mesh connecࢢons between the access points on the quadcopters.

4.3 Flight Controllers
The flight controller is the nerve center of a drone. Flight control systems can be GPS enabled
autopilot systems flown via two way telemetry links or basic stabilizaࢢon systems using hobby
grade radio control hardware[8].

Flight control systems have many sensors available to them – GPS, barometric pressure sen-
sors, airspeed sensors, among others. Themajor contributors to the flight calculaࢢons are sࢢll the
gyros22, coupled with accelerometers23.

Figure 10: Flight Dynamic Parameters

22Measure rate of rotaࢢon about an axis
23Measure acceleraࢢon

22

Together, these sensors can help measure the 3 criࢢcal flight dynamic parameters (refer fig. 9
[9]):

• Roll - Rotaࢢon around the front-to-back axis

• Pitch - Rotaࢢon around the side-to-side axis

• Yaw - Rotaࢢon around the verࢢcal axis

Special devices, called Inerࢢal Measurement Units (IMU), are used to read the sensors and
use sensor fusing algorithms to determine current posiࢢon and aࢰtude. These readings are then
made available to the autopilot for use or transmission.

4.3.1 PixHawk PX4

Our choice over several other autopilot projects (such as ARDUPilot, OpenPilot, etc.) was PX4.
The main reasons behind choosing PX4 was it's easy to understand tutorials, integraࢢon with ROS
using the MAVROS package and a provision of simulaࢢng the PX4 stack on ROS+Gazebo.

PX4 is an independent, open-source, open-hardware project aiming at providing a high-end
autopilot to the academic, hobby and industrial communiࢢes, licensed under BSD license. It is
a high-performance autopilot-on-module suitable for fixed wing, mulࢢ rotors, helicopters, cars,
boats and any other roboࢢc pla�orm that can move[12].

Figure 11: Pixhawk PX4 Flight Controller

23

4.3.1.1 Technical Specificaࢢons[12]

• Processor - 32-bit STM32F427 Cortex M4 core with FPU

• RAM - 256 KB

• Flash Memory - 2 MB

• Co-Processor - 32 bit STM32F103

4.3.1.2 So[ware

The open-source so[ware suite used with PX4 contains everything to let airborne system fly in-
cluding the QGroundControl[15] and 2/3D aerial maps (with Google Earth support) and drag-and-
drop waypoints.

4.3.1.3 Integraࢢng with ROS

A bridge connecࢢon needs to be setup with an on-board system, for trading MAVLink messages.
A companion computer24 can be connected using a UART25 cable, or a UART adapter or a USB26
cable.

A[er seࢰng up the bridge connecࢢon, we can run a ROS node on the on-board computer (e.g.
Odroid Board), which can then be connected to our base camp using a WiFi network.

Figure 12: PX4 & RSOS Integraࢢon

24On-board computer connected with bridge connecࢢon
25Universal Asynchronous Receiver / Transmi�er
26Universal Serial Bus

24

The ROS node on our on-board computer can be run by using the sample launch file below:
1 < l aunch >
2

3 < a rg name= " f c u _ u r l " d e f a u l t = " s e r i a l : / / / dev / ttyACM0:921600 " / >
4 < a rg name= " g c s _ u r l " d e f a u l t = " udp: / / :14556@192 . 1 6 8 . 1 5 0 . 2 :14550 " / >
5 < a rg name= " t g t _ s y s t em " d e f a u l t = " 1 " / >
6 < a rg name= " tgt_component " d e f a u l t = " 50 " / >
7

8 <node name= "mavros " pkg= " mavros " type = "mavros_node " output = " s c reen " >
9 <param name= " f c u _ u r l " v a l ue = " $ (a rg f c u _ u r l) " / >
10 <param name= " g c s _ u r l " v a l ue = " $ (a rg g c s _ u r l) " / >
11 <param name= " t a r g e t _ s y s t em_ i d " va l ue = " $ (a rg t g t _ s y s t em) " / >
12 <param name= " ta rge t_component_ id " va l ue = " $ (a rg tgt_component) " / >
13

14 < rosparam command= " load " f i l e = " $ (f i n d mavros) / l aunch / p x 4 _ b l a c k l i s t . yaml " / >
15

16 < !−− enab le hea r t bea t send and reduce t imeout −−>
17 <param name= " conn_hear tbea t " va l ue = " 5 . 0 " / >
18 <param name= " conn_t imeout " va l ue = " 5 . 0 " / >
19

20 < !−− a u t oma t i c a l l y s t a r t mav l i nk on USB −−>
21 <param name= " s t a r t up_p x4_u sb_qu i r k " va l ue = " t r ue " / >
22

23 < / node>
24

25 <node name= " camera " pkg= " usb_cam " type = " usb_cam_node " >
26 <param name= " v i d eo_dev i c e " va l ue = " / dev / v ideo0 " / >
27 <param name= " image_width " va l ue = " 800 " / >
28 <param name= " image_he i gh t " v a l ue = " 600 " / >
29 <param name= " p i x e l _ f o rma t " va l ue = "mjpeg " / >
30 <param name= " f r amera te " va l ue = " 30 " / >
31 <param name= " camera_f rame_id " va l ue = "webcam" / >
32 < / node>
33

34 < / l aunch >

Snippet 11: PX4 ROS Launch File Sample

The above launch file launches 2 nodes, aMAVROS node and a Camera node. The node pub-
lishes data to a topic named camera/image_raw. We can then visualize the image data sent via
MAVLink using rqt plugin for image viewing.

Using ROS command for topic informaࢢon, rostopic hz /camera/image_raw, we can see the
data transfer informaࢢon like below:

1 s ub s c r i b ed to [/ camera / image_raw]
2 average r a t e : 30 .026
3 min : 0 .027 s max : 0 .037 s s t d dev : 0 .00237 s window : 28
4 average r a t e : 30 .016
5 min : 0 .027 s max : 0 .041 s s t d dev : 0 .00250 s window : 58
6 average r a t e : 30 .057
7 min : 0 .027 s max : 0 .041 s s t d dev : 0 .00243 s window : 88

Snippet 12: ROS Topic Informaࢢon

25

4.4 Mulࢢrotor Airframe & Power Systems
This project relies on small unmanned aerial vehicles (SUAS) or surveying and package delivery.
There are four main categories of SUAS used today: Mulࢢcopters, Helicopters, Fixed Wing, and
VTOL FixedWing. For the purposes of this project, we chose to implement an iniࢢal concept using
mulࢢcopters due to their mechanical simplicity and ease of deployment.

Due to recent advancements in microprocessor and inerࢢal sensing technology, mulࢢcopters
are now very capable and affordable for the hobbyist market. We chose to construct our quad-
copters from components designed for hobbyists due to their low cost and commercial availability.
By using components that are available off the shelf we are able to create an affordable system
and devote more development meࢢ to our innovaࢢve so[ware funcࢢonality

Our primary objecࢢves for the mulࢢrotor design were to maximize range and flight .meࢢ

4.4.1 Power Systems

A mulࢢrotor power system consists of several components that are all interdependent. When
designing a mulࢢrotor, one must consider the requirements of their system and select propellers,
motors, speed controllers, and power sources accordingly. In order to have an efficient system,
care must be taken to pair each of these components.

4.4.2 Propellers

Generally, a slower moving propeller with a large disc area is more efficient than a faster moving
propeller of smaller disc area producing an equal amount of staࢢc thrust. Because of this, we
decided to use large 17” propellers to produce the thrust for our system.

In order to most effecࢢvely select motors and the power source, potenࢢal component sets
were simulated using the ecalc xcoptercalc applicaࢢon maintained by Markus Muller. Twelve po-
tenࢢal sets of commercially available components were compared using ecalc. From these simu-
laࢢons, the following set of components was selected.

4.4.3 Motors

Turnigy Mulࢢstar Elite 3508 motors were selected. These motors have a stator that is 35mm in
diameter by 8mm tall and a KV of 268RPM/Volt. Because of the large stator and slow KV, these
motors are capable of producing a large amount of torque very efficiently at low RPM. These
characterisࢢcs pair well with the 17” propellers we selected.

4.4.4 Power Supply

A Turnigy Mulࢢstar 6s (24v) 8Amp hour LiPo was selected for the power supply. Lithium Polymer
(LiPo) ba�eries are popular for mulࢢcopters due to their high energy density, high current output
and their relaࢢvely low cost. Themotors we selected produce their maximum rated power output
at the 24v voltage of a 6 cell LiPo. By using 6 cell as opposed to the more common 4 cell, we are
able to deliver more power to the motors with less current. This allows the usage of a lighter
ba�ery with a lower current raࢢng. Addiࢢonally, this allows us to use smaller gauge wire and
connectors for power distribuࢢon, contribuࢢng addiࢢonal weight savings.

26

4.5 Image Processing
Image processing is any form of signal processing for which the input is an image, such as a photo-
graph or video frame; the output of image processing may be either an image or a set of charac-
terisࢢcs or parameters related to the image. Most image-processing techniques involve treaࢢng
the image as a two-dimensional signal and applying standard signal-processing techniques to it[1].

For our image processing in the project, we have heavily uࢢlized OpenCV27. It is a library of
programming funcࢢons mainly aimed at real-ࢢme computer vision. OpenCV is wri�en in C++ and
its primary interface is in C++. It also has full interfaces in Python, Java and MATLAB/OCTAVE. It
implements both infrastructure operaࢢons and image-processing and vision funcࢢons[11].

As an introducࢢon to Image-processing (since it is one of the core areas of our soluࢢon), we
would like to share some basic tutorials on image-processing for human detecࢢon using OpenCV
and HOG algorithm[7].

NOTE:We've uploaded sample OpenCV code on our blog and github.

4.5.1 Basic Image Processing: Capturing video from camera

Reading image data from a capture object, like a USB Camera or built-in camera, is really simple.
We use the VideoCapture object of OpenCV, and read the data frame-by-frame. Sample code and
in-line comment explanaࢢon will help you understand video capturing be�er:

1 / / I n c l u d e the OpenCV Header F i l e s
2 # i n c l u d e " opencv2 / h i g h g u i / h i g h g u i . hpp "
3 # i n c l u d e < ios t ream >
4

5 u s i n g namespace cv ;
6 u s i n g namespace s t d ;
7

8 i n t main (i n t argc , cha r * a rgv [])
9 {
10 / / C rea te a V ideoCaptu re Ob je c t and Open camera "0"
11 V ideoCaptu re cap (0) ;
12

13 / / Check i f camera i s opened
14 i f (! cap . i sOpened ())
15 {
16 cout << " Cannot open the v ideo cam" << end l ;
17 r e t u r n −1;
18 }
19

20 / / Get Frame S i z e (Width and He i gh t)
21 double dWidth = cap . ge t (CV_CAP_PROP_FRAME_WIDTH) ;
22 double dHe igh t = cap . ge t (CV_CAP_PROP_FRAME_HEIGHT) ;
23

24 / / C rea te a window to show image
25 namedWindow ("MyVideo " , CV_WINDOW_AUTOSIZE) ;
26

27

28

27Open Source Computer Vision

27

http://blogs.cornell.edu/cornellcup2015adra/2015/04/02/image-processing/
https://github.com/vageeshb/OpenCV_Examples

29

30 wh i l e (1)
31 {
32 Mat frame ;
33

34 / / Read new frame i n t o ma t r i x
35 boo l bSucce s s = cap . read (frame) ;
36

37 i f (! bSucce s s)
38 {
39 cout << " Cannot read a frame from v ideo stream " << end l ;
40 break ;
41 }
42

43 / / Show the frame i n the window
44 imshow ("MyVideo " , frame) ;
45

46 / / Qu i t i f u se r p r e s s e s ' e sc ' key
47 i f (wa i tKey (3 0) == 27)
48 {
49 cout << " esc key i s p re s sed by use r " << end l ;
50 break ;
51 }
52 }
53 r e t u r n 0 ;
54 }

Snippet 13: Video Capture Sample Code

4.5.2 Human Detecࢢon: Histograms of Oriented Gradients

Histograms of Oriented Gradients(HOG) are feature descriptors that are used in the field of image
processing for human detecࢢon. It evaluates and counts the occurrences of gradient orientaࢢons
in a localized porࢢonof an image. In other terms, an object appearing in an image can be described
by its distribuࢡon of intensity gradients.

Figure 13: Overview of how HOG works

28

A sample implementaࢢon of HOG algorithm in OpenCV can be done as below:
1 # i n c l u d e < ios t ream >
2 # i n c l u d e <opencv2 / opencv . hpp>
3

4 u s i n g namespace s t d ;
5 u s i n g namespace cv ;
6

7 i n t main (i n t argc , con s t cha r * a rgv [])
8 {
9 V ideoCapture cap (CV_CAP_ANY) ;
10 cap . s e t (CV_CAP_PROP_FRAME_WIDTH , 320) ;
11 cap . s e t (CV_CAP_PROP_FRAME_HEIGHT , 240) ;
12 i f (! cap . i sOpened ())
13 r e t u r n −1;
14

15 Mat img ;
16 HOGDescr ip tor hog ;
17 hog . setSVMDetector (HOGDescr ip tor : : g e tD e f a u l t P e op l eDe t e c t o r ()) ;
18 namedWindow (" v ideo cap tu re " , CV_WINDOW_AUTOSIZE) ;
19 wh i l e (t r ue)
20 {
21 cap >> img ;
22 i f (! img . data)
23 con t i nue ;
24 vec to r < Rect > found , f o u n d _ f i l t e r e d ;
25 hog . d e t e c tMu l t i S c a l e (img , found , 0 , S i z e (8 , 8) , S i z e (3 2 , 3 2) , 1 . 05 , 2) ;
26

27 s i z e _ t i , j ;
28 f o r (i =0 ; i < found . s i z e () ; i ++)
29 {
30 Rect r = found [i] ;
31 f o r (j =0 ; j < found . s i z e () ; j ++)
32 i f (j ! = i && (r & found [j]) == r)
33 break ;
34 i f (j == found . s i z e ())
35 f o u n d _ f i l t e r e d . push_back (r) ;
36 }
37 f o r (i =0 ; i < f o u n d _ f i l t e r e d . s i z e () ; i ++)
38 {
39 Rect r = f o u n d _ f i l t e r e d [i] ;
40 r . x += cvRound (r . w idth * 0 . 1) ;
41 r . w idth = cvRound (r . w idth * 0 . 8) ;
42 r . y += cvRound (r . h e i g h t * 0 . 0 6) ;
43 r . h e i g h t = cvRound (r . h e i g h t * 0 . 9) ;
44 r e c t a n g l e (img , r . t l () , r . br () , cv : : S c a l a r (0 , 2 5 5 , 0) , 2) ;
45 }
46 imshow (" v i deo cap tu re " , img) ;
47 i f (wa i tKey (2 0) >= 0)
48 break ;
49 }
50 r e t u r n 0 ;
51 }

Snippet 14: HOG Implementaࢢon using OpenCV

29

5 Project Execuࢢon

5.1 Challenges in Project
Some of the challenges faced during execuࢢon of the project are:

1. Power Consumpࢢon Dilemma:

• Problem: Power consumpࢢon overheads for communicaࢢon and image processing
tasks.

• Soluࢢon: Running opࢢmizaࢢon tests to figure out what level of data compression is
suitable for keeping overheads minimum.

2. Low Power Plan of Acࢢon:

• Problem: In case of low power, what should the plan of acࢢon be? Should we con-
nueࢢ surveying and gather more data causing a lost in copters, or should we recall the
copters causing a loss in data and mission ?meࢢ

• Soluࢢon: By default, we will be alerࢢng the operator when power is below threshold.
The operator's decision and judgement will be followed by the system.

3. Network Configuraࢢon:

• Problem: The current network setup (Peer-to-Peer) has a major issue of low range for
mission. We want the system to be used for longer mission radius.

• Soluࢢon: We plan to implement the WiFi Mesh network as discussed in secࢢon 4.2.2.

4. Object Detecࢢon:

• Problem: The default HOG algorithm is designed for smaller images(1/3rd the size of
current captured image). Using this algorithm for this scale of image causes heavy
processing, leading to slow computaࢢon .meࢢ

• Soluࢢon: Overriding the default descriptors of HOG by training it will help in increasing
accuracy and decrease computaࢢon .meࢢ

5.2 Risks & Miࢢgaࢢons
Every project has risks, either idenࢢfied before-hand or encountered while execuࢢng. The below
list describes the risks we have facedwhile execuࢢng the process, as well asmiࢢgaࢢon steps taken:

1. Damages:

• Self Damage: While deployment, the copter might damage itself or it's surroundings
if sufficient space is not provided. A soluࢢon for this risk is to use a custom 3m X 3m
launchpad.

30

• Environment Damages: Due to sharp propellers rotaࢢng at high speeds, there might
be a possibility of accidental damages if not handled properly. Our soluࢢon is to fab-
ricate a brace/ring around the propeller so as to keep it from causing damages.

• Hardware Damages: Many individual components are used to build the whole system
together. Protecࢢng these components, while keeping theweight to a reasonable limit
is a challenge. We have fabricated the design of the copter in such a way that it's main
components(flight controller, ba�ery and on-board computer) are protected.

2. Obstacles:

• Airspace Disturbance: There might be a risk of other aerial vehicles sharing the same
airspace. In such a scenario, we need to plan our route or take an acࢢon to avoid
collision.

• EnvironmentDisturbance: Someࢢmes, theweather or environmentmaynot be friendly
for flying the copters. In such cases, safety overrides should be provided to the oper-
ator for safely landing and retrieving the copter.

5.3 Peer Reviews
While execuࢢng the project, we have tried to conduct reviews with peers, target audience and
industry experts. Some of the feedback given by them have been listed below:

1. Target Audience (EMS Personnels)

(a) FeedbackMore control for the operator.
Impact Change of scope of project, from autonomous to semi-autonomous.

(b) Feedback Different payload modules.
Impact 3 different payload cartridges housing packages for varying needs (like com-
municaࢢon aides, food packets and medical supplies).

2. Industry Expert (Network Configuraࢢon)

(a) Feedback Less reliance on Peer-to-peer network due to its inability to funcࢢon over
long range.
Impact Learning about WiFi mesh network using IEEE 802.11s protocol, and imple-
menࢢng it as a future task.

3. Peers

(a) Feedback Allowing mulࢢple UAV configuraࢢons
Impact UAV configuraࢢons like mulࢢcopter(besides quadcopter) and fixed-wings are
being researched on.

31

5.4 Component List and Budget
The below list describes the components used in building a copter and their prices. Besides this,
the copter also uses a Pixhawk PX4 flight controller which costs around 200 $.

Figure 14: Components used and their prices (per copter)

6 Recommendaࢢons & Next Steps
There are a few important addiࢢons to this project that need to be made in the immediate future.
1. The first change that needs to be implemented is upgrading the communicaࢢon systems
of the quad copters. The major change that needs to be done for this is implemenࢢng the
WiFi mesh network with a group of the quadcopters. This is important because it will allow
for easy control of larger swarms of mulࢢcopters, as well as allowing quads far away from
the base staࢢon to send back high bandwidth video data without a decline in quality. The
other communicaࢢon system that can be added to the quads is a system that allows the first
responders to communicate with the located vicࢢms, such as an audio connecࢢon.

2. Thenextmajor change is creaࢢng replaceable payload components formulࢢ-domain projects.
This includes adding payloads consisࢢng of more advanced sensors for detecࢢon and envi-
ronment analysis. The main sensors currently being considered are a thermal camera, and
LIDAR. The thermal camera would make it much easier to detect humans in large environ-
ments (especially at night in the desert). The IDAR would allow for the quad to implement
Simultaneous Localizaࢢon and Mapping (SLAM), which would allow it to crease three di-
mensional models of the surrounding environments; these maps would make it easier for
autonomous route planning for the rest of the quads as well as for the first responders. The
other payload change would be modifying a delivery payload so it can also contain basic
detecࢢon sensors, like HD cameras.

3. The last of the important addiࢢons to this project that should be done is upgrading and
opࢢmizing several of the so[ware components. The two big pieces of the so[ware that
need to be opࢢmized are the path planning algorithms and the user interface for the ground
staࢢon. The path planning algorithms needs to be upgraded to use more data about the
surrounding environment. This can be aided with new data from the upgraded payloads,
such as SLAM data. The ground control staࢢon needs to be upgraded so the system is easy
for first responders to use and requires very li�le training on their part. If possible, the use of
the on-board FPGAs in the Intel embedded board can also be uࢢlized to improve the image
processing performance and return more accurate results.

32

Appendix: Figures
1 A flow diagram showing the work-flow of the system soluࢢon 6
2 Subsystem performance evaluaࢢon . 11
3 High level overview of ROS Architecture[10] . 12
4 GUI for rqt_graph[19] . 17
5 GUI for rqt_console[18] . 17
6 GUI for rqt_plot[20] . 18
7 GUI for Gazebo[3] . 18
8 MAVLink Communicaࢢon Flow . 20
9 WiFi Mesh Network . 21
10 Flight Dynamic Parameters . 22
11 Pixhawk PX4 Flight Controller . 23
12 PX4 & RSOS Integraࢢon . 24
13 Overview of how HOG works . 28
14 Components used and their prices (per copter) 32

Appendix: Code Snippets
1 Sourcing ROS Environment variables . 14
2 Iniࢢalizing catking workspace . 14
3 Creaࢢng a ROS Package . 15
4 Lisࢢng ROS Nodes . 15
5 ROS Node Informaࢢon . 15
6 Running a ROS Node . 16
7 Sample ROS Node Code in C++ . 16
8 Building and Running our node . 16
9 Sample MAVLink Message . 19
10 Custom MAVLink Message . 20
11 PX4 ROS Launch File Sample . 25
12 ROS Topic Informaࢢon . 25
13 Video Capture Sample Code . 27
14 HOG Implementaࢢon using OpenCV . 29

33

References

[1] Acharya, T., and Ray, A. Image Processing: Principles and Applicaࢡons. Wiley, 2005.

[2] Adams, A., Schmidt, T., Newgard, C., Federiuk, C., Chrisࢢe, M., Scorvo, S., and DeFreest, M.
Search is a calࢢme-criࢢ event: when search and rescue missions may become fuࢢle. Wilder-
ness & Environmental Medicine 18 (2007), 95--101.

[3] Baranov, I. Clearpath Roboࢡcs: ROS 101, Mar. 2014. http://www.clearpathrobotics.com/
blog/ros-101-drive-husky/.

[4] Barr, A. Amazon tesࢢng delivery by drone, ceo bezos says. Retrieved April 22 (2013), 2014.

[5] Bohren, J. Building Modular ROS Packages, Feb. 2014. http://jbohren.com/articles/
modular-ros-packages/.

[6] Conley, K. ROSDocumentaࢡon: Concepts, Sept. 2009. http://wiki.ros.org/ROS/Concepts.

[7] Dalal, N., and Triggs, B. Histograms of oriented gradients for human detecࢢon. In Com-
puter Vision and Pa�ern Recogniࢡon, 2005. CVPR 2005. IEEE Computer Society Conference
on (2005), vol. 1, IEEE, pp. 886--893.

[8] Fabio, A. Droning On: Choosing a Flight Controller, June 2014. http://hackaday.com/2014/
06/06/droning-on-flight-controller-round-up/.

[9] How Things Fly. Roll, Pitch, and Yaw. https://howthingsfly.si.edu/flight-dynamics/
roll-pitch-and-yaw.

[10] Laplace, J. Robot Operaࢡng System Overview, Nov. 2011. http://generationrobots.
developpez.com/tutoriels/presentation-robot-operating-system/.

[11] Parker, J. Algorithms for Image Processing and Computer Vision. IT Pro. Wiley, 2010.

[12] Pixhawk. Pixhawk PX4 Specificaࢡons. https://pixhawk.org/modules/pixhawk.

[13] Posen, B. R. Command of the commons: the military foundaࢢon of us hegemony. Interna-
onalࢡ Security 28, 1 (2003), 5--46.

[14] QGroundControl. Creaࢡng a MAVLink Message. http://qgroundcontrol.org/mavlink/
create_new_mavlink_message.

[15] QGroundControl. Ground Control Staࢡon for Small Air|Water|Land autonomous unmanned
vehicles. http://qgroundcontrol.org/.

[16] Quadrelli, M., McHencry, M., Wilcox, B., Hall, J., Volpe, R., Nesnas, I., Nayar, H., Backes, P.,
Mukherjee, R., Ma�hies, L., Zimmerman, W., and Mi�man, D. Guidance, navigaࢢon, and
control technology assessment for future planetary science missions. Planetary Science Pro-
gram Support Task, Naࢡonal Aeronauࢡcs and Space Administraࢡon (2013), i--10.

34

http://www.clearpathrobotics.com/blog/ros-101-drive-husky/
http://www.clearpathrobotics.com/blog/ros-101-drive-husky/
http://jbohren.com/articles/modular-ros-packages/
http://jbohren.com/articles/modular-ros-packages/
http://wiki.ros.org/ROS/Concepts
http://hackaday.com/2014/06/06/droning-on-flight-controller-round-up/
http://hackaday.com/2014/06/06/droning-on-flight-controller-round-up/
https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw
https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw
http://generationrobots.developpez.com/tutoriels/presentation-robot-operating-system/
http://generationrobots.developpez.com/tutoriels/presentation-robot-operating-system/
https://pixhawk.org/modules/pixhawk
http://qgroundcontrol.org/mavlink/create_new_mavlink_message
http://qgroundcontrol.org/mavlink/create_new_mavlink_message
http://qgroundcontrol.org/

[17] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. Ros:
an open-source robot operaࢢng system. In ICRA workshop on open source so[ware (2009),
vol. 3, p. 5.

[18] Saito, I. ROSDocumentaࢡon: RQT Console, Sept. 2012. http://wiki.ros.org/rqt_console.

[19] Saito, I. ROS Documentaࢡon: RQT Graph, Sept. 2012. http://wiki.ros.org/rqt_graph.

[20] Saito, I. ROS Documentaࢡon: RQT Plot, Sept. 2012. http://wiki.ros.org/rqt_plot.

[21] Wise, M. ROS Documentaࢡon: Understanding Nodes, Aug. 2009. http://wiki.ros.org/
ROS/Tutorials/UnderstandingNodes.

35

http://wiki.ros.org/rqt_console
http://wiki.ros.org/rqt_graph
http://wiki.ros.org/rqt_plot
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

	Challenge
	Description
	Motivation
	Requirements
	Importance

	Solution
	Concept & Desired Solution
	Proposed Solution
	Project Components
	Project Sub-Components
	Changes from Original Solution
	Innovation

	Performance Evaluation
	Measures to meet challenge needs
	Performance Measure Matrix for Sub-systems
	Performance Evaluation
	Evaluation Summary

	Technical Documentation
	Software Architecture
	ROS: Overview
	ROS Nomenclature
	Why ROS?
	Using ROS

	Network Infrastructure & Setup
	One-to-One WiFi Network
	WiFi Mesh Network

	Flight Controllers
	PixHawk PX4

	Multirotor Airframe & Power Systems
	Power Systems
	Propellers
	Motors
	Power Supply

	Image Processing
	Basic Image Processing: Capturing video from camera
	Human Detection: Histograms of Oriented Gradients

	Project Execution
	Challenges in Project
	Risks & Mitigations
	Peer Reviews
	Component List and Budget

	Recommendations & Next Steps

