

Integrated Pest Management And the ecology that

makes it necessary and effective New York State IPM Program

Joellen Lampman, School and Turfgrass IPM Extension Support Specialist

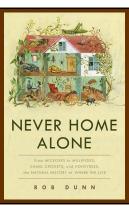
About me

• Life-long environmental educator

About me

- Life-long environmental educator
- Garden dabbler and lawn minimalist
- Prefer set-it-and-forget-it methods I'd rather be fishing!

About me


- Life-long environmental educator
- Garden dabbler and lawn minimalist
- Prefer set-it-and-forget-it methods I'd rather be fishing!
- New favorite plant mountain mint

Book Recommendation

 A natural history of the wilderness in our homes, from the microbes in our showers to the crickets in our basements.

Your Turn!

- County?
- Favorite Master Gardener Program activity?
- Recent plant discovery?

IPM

Integrated **PEST** Management

What is a pest?

WHAT IS A PEST?

• Living organism

WHAT IS A PEST?

- Living organism
- Not what it is; but what it does: • Property damage

WHAT IS A PEST?

- Living organism
- Not what it is; but what it does: • Property damage
- Eats and/or contaminates our food

WHAT IS A PEST?

- Living organism
- Not what it is; but what it does:
- Property damage
- Eats and/or contaminates our food
- Health risks

I found a bug!

Today's plan

- Integrated Pest Management
 Overview
- Ecology 101
- What's Bugging You?

Your Turn!

- What does IPM mean to you?
- Let us know if you have never heard of it before.

Integrated Pest Management

• Goal: manage pests while minimizing the human health, environmental, and economic risks of pests and pest management.

Integrated Pest Management

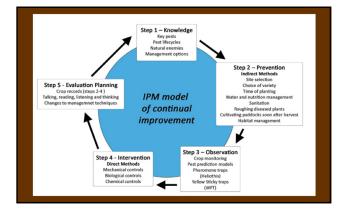
- Is a science-based, decision-making process
- Relies on knowledge of:
- pest biology
- environmental information, and
- available technology

Integrated Pest Management

IPM integrates all aspects of pest control.
Use multiple strategies or "many small hammers"

IPM versus organic

• Organic food production is regulated by the USDA National Organic Program.


National Road Map for Integrated Pest Management, 2013

- Both IPM and organic approaches seek to minimize the environmental impacts of pest management practices.
- **Organic** is IPM, but with less hammers in the tool chest (mostly synthetic chemical pesticides).

Integrated Pest Management

- IPM integrates all aspects of pest control.
- IPM does include the prevention of problems before they happen.

Why is IPM important?

• There are health concerns and risks from pests, pest allergens, and pesticides.

What is a Pesticide?

- A pesticide is any substance or mixture of substances intended for:
 - Preventing,
 - Destroying,
 - •Repelling, or
- Mitigating any pest.

What is a Pesticide?

- Pesticides include:
 - Insecticides
 - Rodenticides
 - Herbicides
 - Bactericides
 - Repellants
 - Insect repellants can be an insecticide
 - Biopesticides made from microorganisms or natural products

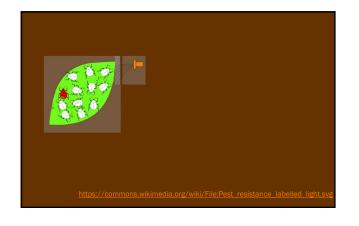
Pesticides impact targets and non-targets by:

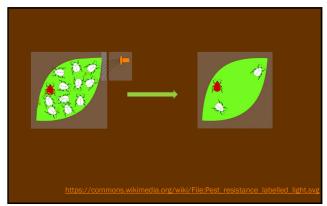
- Lethal poisoning
 - Of individuals
 - Of food
 - Of beneficial and other off-target organisms

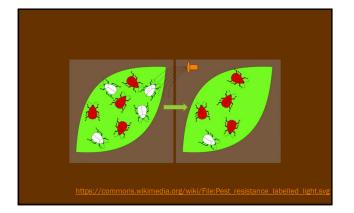
• Sublethal poisoning

- Increases chance of dying from other stresses
- Decreases ability to attract a mate, defend a territory, or feed young
- Lessens ability to escape from predators

Pesticide Resistance – Evolution!


Target Site pesticide no longer binds to the target site


Metabolic insect detoxifies pesticide to less harmful substance



Penetration thicker cuticles prevent pesticide penetration

NOTE: Resistance is not restricted to pesticides

Pesticides and Sub-Lethal Off-Target Impacts

- Kill food plants
- Reduce insect populations through loss of food plants
- Reduce berry and nut crops through stress or killing of beneficial pollinators
- Degrade shelter

How to Minimize Off-Target Impacts?

- Read the label
- Choose pesticides based on environmental impacts

NYS IPM Program Resource

Environmental Impact Quotient - https://nysipm.cornell.edu/eig

What about home remedies?

- If used to kill or repel, it is a pesticide. We CANNOT recommend!
- A story of an idea: Would adding a surfactant make a yellow jacket trap more efficient or would the soap be a pesticide?

DEC Decision – surfactants can be used for mechanical efficiency – let the testing begin!

DEC Decision – surfactants can be used for mechanical efficiency – let the testing begin!

DEC Decision – surfactants can be used for mechanical efficiency – data doesn't support

Your Turn!

• Let's check what recommendations you have heard and whether they are legal.

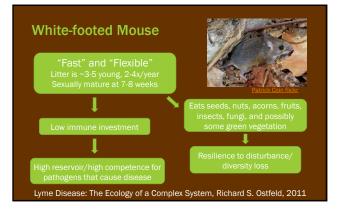
Questions about IPM process or pesticides?

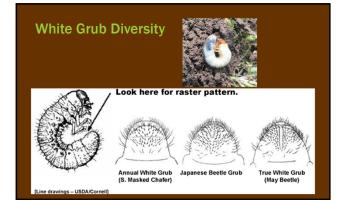
Ecology 101

- Ecology is the study of living things in relation to each other and their environment.
- IPM Assessment
 - What is it?
 - Why is it here?How does it survive?
 - How many are there?

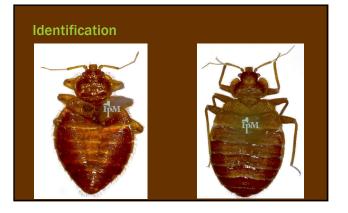
Levels of Ecology

- Species
- Population
- Community
- Ecosystem

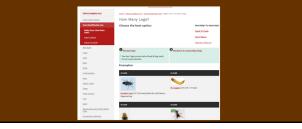



Species

• A single type of organism, such as a white-tailed deer, Asian tiger mosquito, or spinach



Insect		Jan- Mar	Apr	May		June	July	Aug	s	ep	Oct	Nov- Dec
European Chafer		3 rd instar larvae		3 rd star larvae		Adults emerge, mate & lay eggs		1 st instar larvae	2" inst larv	tar	3 rd instar larvae	3 rd instar larvae
June Beetle	Year 1	Adults ov	Adults emerge, mate & lay eggs		1" instar larvae			2 nd Instan Iarvae	-	2 nd instar larvae		
	Year 2	2 nd instar larvae		2 nd instar larvae		3 rd instar larvae 3 rd ir				3 rd inst	tar larvae	
	Year 3	3 rd insta	3 rd instar P larvae		Pup	pation and adults remain in soil to hibernate and overwinter						
Japanese Beetle		3rd instar larvae 3		3rd	3 rd star larvae		Adult emerge, & lay e	mate in	star star	2 nd , 3 th instan	3 rd inst	tar larvae


NYS IPM Program Resource

• What's Bugging You? l.edu/whats_bugging_you

NYS IPM Program Resources

• Pest Identification Key

Population

• A group of the same species, such as a bale of turtles, herd of deer or swarm of mosquitoes.

Population

- Intraspecies Competition
- Density
- Distribution
- Behavior

IPM Implications – IPM Thresholds

- There is a big difference between an incident and an infestation.
- Individuals rarely give us problems.
- Population size matters.
- The goal is not to kill every individual but to manage populations at tolerable levels.
- Thresholds tell us when its time to take action

Threshold Example

- White Grubs
- Sample 1 square foot
- Count Grubs
- Threshold Levels
 - 8-10 grubs per square foot If irrigated and well fertilized lawn, then 12-15 per square foot

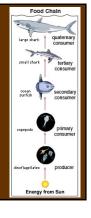
We often can't stop introductions

Community

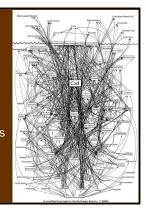
• An ecological community is made up of *different* populations of species.

Community

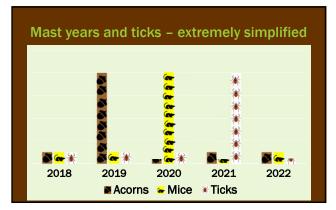
- Interspecific competition
- Food Web
- Species diversity



IN AN ATTEMPT TO SLOW DOWN THE CARPENTER ANTS, THE DUFFY'S RELEASE INSPECTOR ANTS


Food Chain

- Looking at Community-based Ecology
- Very simple
- Arrows point in one direction
- If true, highly susceptible to disruption



Food Web

- Very Complex
- Rich biodiversity
- Copious connections
- Significant overlap
- High resistance to disruptions

- Simple systems are vulnerable systems
- Diversity is a casualty of control

IPM Implications

- Whenever possible, manage for diversity
- NYSIPM Research Increasing plant diversity on Christmas tree farms

NYSIPM/CCE Research

• Increasing plant diversity in lawns

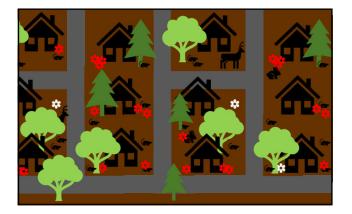
NYS IPM Program Resources

Blog - <u>https://blogs.cornell.edu/biocontrolbytes</u>

• Crop rotation or skipping years can prevent crop specific pests from increasing year to year

Ecosystems

- Include Abiotic Factors
- Geology
- Precipitation
- •Sun
- Wind
- Water
- Soil
- Climate
- Microclimate



• Populations interact with each other and the physical environment in obvious, and not so obvious, ways.

IPM Implications

• Populations interact with each other and the physical environment in obvious, and not so obvious, ways.

Your turn

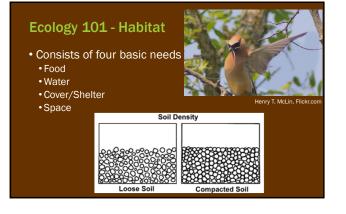
• What pest issues are we bringing on ourselves?

Ecosystems versus Habitat

- Ecosystems All living organisms, their physical environment, and all their connections in a particular unit of space
- Habitat a place where a species naturally lives; its address

Ecology 101 - Habitat

• Consists of four basic needs


Ecology 101 - Habitat

• Consists of four basic needs • Food

Ecology 101 - Habitat • Consists of four basic needs • Food • Water • Cover/Shelter

IPM Implications

- We can manage the landscape to: • Prevent problems
 - Provide the best possible habitat for the desired species
- Degrade the habitat for undesirable species
- Enhance beneficials' habitat

Habitat

- Food
- Water
- Cover
- Space

IPM Implications – Exclusion

- Deer
 - 8-foot barrier fences Individual plant protection
- Electric fences

IPM Implications - Increase competition

• Grow healthy plants that can tolerate pest pressure

IPM Implications

Use food as bait to capture pests.

Habitat

- Food
- Water
- Cover
- Space

IPM Implications

- Too much or too little water damages roots
 - Is it pest damage or drought damage?
 Yellow color attractive to insects

Water – Unintended sources

IPM Implications

• Look for standing water and dump it out.

Habitat

- Food
- Water
- Cover/Shelter
- Space

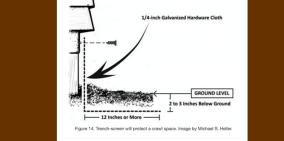
Shelter – Supplemental Structures

Shelter - Leaves

Shelter - Poor maintenance

IPM Implications – Remove shelter

• We can degrade pests' habitat.


IPM Implications – look for entryways

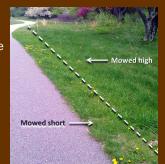
Habitat

- Food
- Water
- Cover/Shelter
- •Space

Weeds are the result of poor turf, not the cause of poor turf. - Randy Prostak, UMass Extension

IPM Implications - Cultivate

- Cultivating Benefits:
- Remediate compacted soils
- Aid in overseeding
- Help manage thatch



Additional Needs - Sunlight

Sunlight

 Raising mowing heights decreases the light available to weeds.

• We can put cultural practices into place to benefit plants and discourage pests.

Ecology 101

- Each **Species** has a habitat (barrel)
- Each **Population** has a **Carrying Capacity** for a given area (water)
- Short term solution mimic natural population reduction
- Long term solution change available habitat

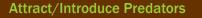
Mimicking accidents

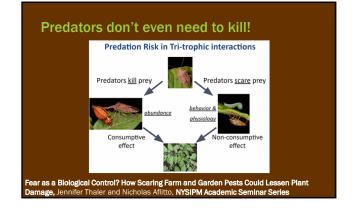
 Most mechanical pest control methods fall under this category

Mimicking Accidents

Mimicking Accidents

Starvation


SanitationBuckthorn bags – stop sprouting



Starvation

Predators don't even need to kill!

Predators don't even need to be real!

IPM Components

- Planning & Prevention
- Monitoring, thresholds
- Diversity of control options
- Pesticides can be a tool, but does not have to be
- Minimizes economic, health and environmental risks

More learning opportunities

- Annual NYS IPM Conference
 - Past Conferences
 - Protecting Pollinators
 - Climate and Weather
 Invasive Species
 - Ticks and Mosquitoes
 - Spotted Lanternfly
 - School IPM
 - Coming Soon to a Screen in
 - Your Home!
 - Vegetable Gardening IPM from the Ground Up
- NYSIPM Seminars
 NYSIPM Academic Seminar Series

In Summary:

- The yard, garden, school, business, community is part of a larger whole.
- Each part is connected to every other part.
- Understanding the parts will lead to greater management choices and successes.
- Keep learning!
- Keep asking good questions!
- Be creative!

The real voyage of discovery consists not in seeking new lands, but in seeing with new eyes. *Marcel Proust*

