

PART 1 Timing of Weed Control, Weed Control Failure, and Technology for Weed Management

Lynn M Sosnoskie Assistant Professor Cornell AgriTech, Geneva NY lms438@cornell.edu, 315- 787-2231

Why Control Weeds?

Palmer Amaranth in Cotton, Soybean, Corn

Yield Loss, Reduced Harvest Efficiency

Parasitism

CornellCALS College of Agriculture and Life Sciences

Alternate Hosts

Hazardous or Toxic

CornellCALS College of Agriculture and Life Sciences

Impacts on Ecosystem Services

CornellCALS College of Agriculture and Life Sciences

When Should we Control Weeds?

(When Should I Apply Herbicides...?)

Cornelicals College of Agriculture and Life Sciences

Herbicides Defined Based on Timing

roots and shoots

College of Agriculture Cornell**CALS** and Life Sciences

This highlights PRE and POST timings, others like PRE-P, PPI, P-DIR may be available

Herbicides Defined Based on Timing

Cornel CALS College of Agriculture and Life Sciences

This highlights PRE and POST timings, others like PRE-P, PPI, P-DIR may be available

Herbicide Definitions

Pre-emergence to crops and weeds

Pre-emergence to weeds

Prevent weed establishment

Pre-emergence to crop

Control emerged weeds

Cornelicals College of Agriculture and Life Sciences

Herbicide Definitions

Pre-emergence to crops and weeds

Pre-emergence to weeds

Prevent weed establishment

Pre-emergence to crop

Control emerged weeds

Cornelicals College of Agriculture and Life Sciences

HOW DO PRE-EMERGENCE HERBICIDES WORK?

Applied to the soil surface, moisture (rain or irrigation) dissolves the herbicide in the soil solution where it is absorbed by developing roots, shoots

Weed species

Pre-emergence ("soil", "residual") herbicides must be applied before weeds successfully emerge and become established

Some products may also have burn-down capabilities (but weed spectrums may vary by use)

CornellCALS 😁

College of Agriculture and Life Sciences

Brown et al. 2022 https://doi.org/10.3389/fagro.2022.888664

Weed species

When to apply depends in part on WHAT SPECIES you are targeting

What if I have species that germinate at different times or have different germination windows?

Sequential treatments, or the inclusion of other control strategies may be needed

It is also dependent on the crop that you are growing (does the residual herbicide fit into crop at the appropriate timing from safety, efficacy, and residue standpoints)

CornellCALS Con

College of Agriculture and Life Sciences

Brown et al. 2022 https://doi.org/10.3389/fagro.2022.888664

The Power of PREs in Beets

Pre-emergence herbicides applied at or near planting can help reduced competitive interactions during early crop growth stages

Prowl H2O

Dual Magnum

A Cardina A

Note the variability in spectrum

DINITROANILINE SUPPRESSION OF BINDWEED

Emily Sausser 2022

Herbicides Defined Based on Timing

CornellCALS College of Agriculture and Life Sciences

This highlights PRE and POST timings, others like PRE-P, PPI, P-DIR may be available

Post-emergence herbicide timing is also dependent on WHAT SPECIES you are targeting

The species needs to physically present to be controlled with foliarapplied post-emergence herbicides

The species also needs to be at a **STAGE OF DEVELOPMENT** where it is sensitive to control

The smaller the better

It is also dependent on the crop that you are growing (does the herbicide fit into crop at the appropriate timing from safety, efficacy and residue standpoints)

WEED SCIENCE

Cornell**CALS**

Buhler, Robert G. Hartzler, and John L. Lindquist (2014) Predicting Emergence of 23 Summer Annual Weed Species. Weed Science. 62:267-279.

College of Agriculture Brown et a

Weed species

Brown et al. 2022 https://doi.org/10.3389/fagro.2022.888664

Weed species

Communities that are a mix of species with different emergence windows (or species with long emergence windows) can be difficult to manage

Sequential POST treatments may be required to ensure that weeds are treated when they are most sensitive

Delaying applications could result in reduced weed control if adequate spray coverage can't be achieved due to shielding, weeds are large enough to regrow following treatments

Selection pressure...

CornellCALS

College of Agriculture and Life Sciences

Brown et al. 2022 https://doi.org/10.3389/fagro.2022.888664

THE PROBLEM WITH "WAITING" FOR POST CONTROL

(*HTTP://BULLETIN.IPM.ILLINOIS.EDU/?P=2024*)

Volunteer Pea Control in Snap Beans

Treatment	Pea Biomass (% Untreated)	
Sandea PRE 0.66 oz/A	45 -	
Sandea POST 0.66 oz/A 2 nd Trifoliate	40 📕	
Sandea POST 0.66 oz/A 4 th Trifoliate	118	

Cornell**CALS** College of Agriculture and Life Sciences

Peas V1 to V3 at snap bean 2nd trifoliate, peas >V4 at snap bean 4th trifoliate

Volunteer Pea Control in Snap Beans

Treatment	Snap Bean Wt (% Untreated)	
Sandea PRE 0.66 oz/A	112 🕇	
Sandea POST 0.66 oz/A 2 nd Trifoliate	118 🕇	
Sandea POST 0.66 oz/A 4 th Trifoliate	77	

CornellCALS and L

College of Agriculture and Life Sciences

Peas V1 to V3 at snap bean 2nd trifoliate, peas >V4 at snap bean 4th trifoliate

Perennials and the Timing of Weed Control in Apples

<u>Canada thistle</u> – Clopyralid in early spring before budding or in fall on new vegetative tissue before first frost (spring, fall)

<u>Yellow nutsedge</u> – Halosulfuron applications at 3-5 leaf stage (sprouted tubers), sequential applications when new flush (secondary emergence) has 3-5 leaves, glyphosate before nutlet formation (spring, summer)

<u>Field bindweed</u> – Spot treatments of systemic herbicides, like 2,4-D, at flowering through fall (summer, fall)

Colleae of Aariculture

- A. If the planting date or crop rotation is not flexible, frequent control of weed seedlings
- B. Overlapping residual herbicide applications
- C. Establishment of residue mulch
- A. If the planting date or crop rotation are flexible, the peak emergence period may be targeted by delaying planting to allow pre-plant control of part of the flush
- B. Planting early at high density to expedite crop canopy closure
- C. Adjusting rotation to allow for a bare fallow
- D. Planting a short-season crop that concludes prior to weed seed production

Height of vertical bars represents the relative crop maturity Physical, chemical control actions are symbolized with an "x."

Brown et al. 2022 https://doi.org/10.3389/fagro.2022.888664

Herbicides are not always completely effective

Wrong herbicide

Incorrect rate or spray volume

Lack or improper use of spray additives

Antagonism, other spray solution issues

Weeds too tall at application

Plant stress

Environmental factors affecting herbicide deposition or activation

Herbicide resistance

CornellCALS College of Agriculture and Life Sciences