I’ve learned…. That just one person saying to me, ‘You’ve made my day!’ makes my day.
— Andy Rooney

Announcements

Small Grain Management

Wednesday, May 4, 6 pm – 8 pm – FIELD MEETING - Early May Small Grain Management – Hosted by the Eckhardts, Kinderhook Creek Farm, 5168 South Stephentown Rd., Stephentown, Rensselaer Co. Agronomy and pest management for rye, oats, barley and malting barley, and wheat. Put on by Aaron Gabriel, Cornell Cooperative Extension. RSVP appreciated, online at https://pub.cce.cornell.edu/event_registration/main/events.cfm or Tove Ford at 518-765-3518, tff24@cornell.edu. Questions to Aaron Gabriel, 518-380-1496 or adg12@cornell.edu.

Thursday, May 26, 6:30 pm—8:30 pm, FIELD MEETING - Late-May Small Grain Management – Pest management and agronomy of rye, wheat, barley and malting barley, oats. Hosted by Kukon Brothers LLC, 2329 US Route 9, Livingston, Columbia Co.

Thursday, June 16, 6:30 pm to 8:30 pm, FIELD MEETING - Mid-June Small Grain Management – Pest management and agronomy of malting barley, barley, rye, wheat, and oats. Hosted by Dietrich Gehring, Indian Ladder Farm, 342 Altamont Rd. (Altamont/Voorheesville).

Monday, July 11, 6:30 pm – 8:30 pm – FIELD MEETING
ING and GRAIN HANDLING TOUR – Small Grain Harvesting and Cleaning Management – Hosted by Ben Dobson, Stone House Farm, 3161 US Route 9, Hudson (Livingston), Columbia Co. A look and discussion of harvest machinery and grain cleaning equipment.

Put on by Aaron Gabriel, Cornell Cooperative Extension. RSVP appreciated, online at https://pub.cce.cornell.edu/event_registration/main/events.cfm or Tove Ford at 518-765-3518, tff24@cornell.edu. Questions to Aaron Gabriel, 518-380-1496 or adg12@cornell.edu. Pesticide Applicator credits requested for most meetings.

Hay Management

Wednesday, May 11, 6 pm—8 PM, FIELD MEETING - Rejuvenating and Renovating Hay Fields, hosted by Rick Ketterer, meet at 4268 Frederick Rd. Altamont, Albany Co. Improving hayfields and a discussion about managing native tall fescue.

Wednesday, June 15, 6:30 pm—8:30 pm, Machinery for Bale Handling and June Field Management – Hosted by Mark Flach, F & M Farms, meet at 128 Hamilton Rd., Athens, Greene County.

Wednesday, July 20, 6:30 pm—8:30 pm, FIELD MEETING - Surface Drainage and Summer Hay Management (including weeds) – Hosted by Richard Apple, Apple Tree Farm, 989 Rynex Corner Rd., Princetown (Schenectady). Put on by Aaron Gabriel, Cornell Cooperative Extension.

Put on by Aaron Gabriel, Cornell Cooperative Extension. RSVP appreciated, online at https://pub.cce.cornell.edu/event_registration/main/events.cfm or Tove Ford at 518-765-3518, tff24@cornell.edu. Questions to Aaron Gabriel, 518-380-1496 or adg12@cornell.edu. Pesticide Applicator credits requested.

FYI

Remember that spring has a high hazard for brush fires. The ground may be wet, but all the winter-killed plants and dead branches are very dry.

Should your plant or sell bin-run seed??? Any seed that is sold to the person who is doing the planting, must be tested—it is the law. You should also test your own seed that you are planting. It cost less than $50 to have a germination and noxious weed test. I have posted an article, the regulations, and a presentation on our blog at: http://blogs.cornell.edu/capitalareaagandhortprogram/category/growing-cereal-grains-for-seed/
Facing This Year’s Crop Challenges

In talking with farmers, two challenges arise. Corn prices are low and it is expensive to grow corn silage. **What can you plant for forage other than corn?** Another challenge is cash flow and not being able to lime soils that need it. **What will grow on acid soils?** Here are a few points that may help.

Yes, it is expensive to plant corn. The range is about $300 to $500. The first question is how much is it costing you? If you cannot plant corn cheaply and get 18 tons/ac corn silage, you must consider if you should be planting corn at all (in my opinion). Here are some alternatives:

- **One-cut BMR forage sorghum:** This crop has good potential. There are may types of sorghum (dwarf, dry stalk) and you should look into these new varieties. The challenge is that the stalks do not dry down much at grain maturity, so the whole plant moisture can be 75% to 80%. Reports have it that the high sugars allow this crop to ferment well despite the high moisture. A few farmers have experience and good success with sorghum. It can be a very good feed. Concep seed coating allows you to use atrazine and metolachlor herbicides.

- **BMR sorghum-sudan:** We have more experience with this. It is typically cut twice during the season and managed like haylage (let it wilt in a wide windrow). This also makes very good feed. Planted with a grain drill, you may not need a herbicide with good management.

- **BMR Sudangrass:** This is a summer annual that will give two or three harvests of haylage. The BMR trait makes it a good quality forage.

- **Soybean silage:** You can make silage out of soybeans and get good yields. The fiber content can get high if you harvest too late and the oil in the seeds is not good for fermentation. Miner Institute and a local farm have used soybean silage. It is okay as a feed, but not great. Possibly, for the daring, plant a mixture of one-cut sorghum and soybean. Forage soybean are of a maturity group that flowers late in the season.

- **Teff:** This summer annual grass is fine stemmed and can be used for hay as well as silage (although I do not know of anyone using it for silage yet). Planted once the soil is 60°F, you can get 3 cuttings if you plant in late May.

- **Sunflower** can be grown in our area but birds and stem rots can be a problem. It is sometimes mixed with corn or sorghum as a mix. Matching maturities of the two crops is a trick. Yields can be reasonable and feed quality decent.

- **Cowpeas** also grow in our region as a summer annual (60°F soil temp for planting). The one time I grew them along some soybean, the deer ate the soybean and not the cowpea. They would eventually adapt to cowpea, I think. Cowpea is a starchy seed, so there is no oil to hurt fermentation. If I were to grow cowpea, I would grow them with a BMR sorghum.

You may not want to wait for 60°F soil to plant. So you can plant a spring crop followed by one of the summer crops above. Spring crops would include oats, spring triticale, and either of
these mixed with field pea. Field pea seed is expensive, pencil it out. You could also follow a spring crop with buckwheat. In times past is has been used for hay and silage. Seed cost is $40 to $50/ac. I would expect about 2—3 tons dry matter per acre. For some questionable or new land, this may be an option.

Milk prices are low again (typical cycle, but it still hurts). Cash may not be available for lime. You should know that there are companies in our region that are marketing wood ash as well as paper mill and sewage treatment plant by-products, to which lime has been added. Roughly, it takes about 5 tons of ash, limed paper fiber, or limed bio-solids to equal a ton of lime. These products can be very inexpensive. Efficient spreading of all the material is important. If soil is very acid, always put your money into lime before fertilizer. Fertilizer becomes unavailable in acid soils. Remember that “tolerating” a low soil pH, does not mean growing at its best. Crops grow less than they could at the proper pH.

What can you plant on acid soils? References, vary as to what the pH tolerances are among of our crops. The tolerance a crop has to pH will vary with the variety and the amount of clay in the soil. It is the aluminum, iron, and manganese in the clay at low pH’s that damage the roots. The amount of these metals in the soil will influence the pH tolerance of the crop. Here is a summary:

- **Redtop:** This was a common grass before timothy and orchardgrass became popular. It will tolerate pH 4.5 and grows on clay and poorly drained soils. It will not tolerate frequent harvests. Seed is expensive but you only plant 3—4 lbs/acre.
- **Japanese millet** is the most acid tolerant of our warm-season grasses (pH 4.6 in one reference). This is not a high-quality forage, but it can be good. It could be planted after oats. *Millets in general are more acid tolerant than sorghums, and sorghums are more acid tolerant than corn.*
- **Oats** is our most acid tolerant small grain.—down to pH 5.5.
- **Grasses:** Typically we want a soil pH no lower than 6.0 for grasses., but they may do okay at pH 5.8. Tall fescue seems to be the most acid tolerant of our usual grasses, possibly tolerating pH 5.0 in some soils.
- **Buckwheat** can tolerate pH down to 5.5.