Category Archives: fruit

Mix and Match: Compatibility of biocontrol with other pest management strategies

Delphastus eating whitefly
This small black Delphastus is helping to control whiteflies in a greenhouse. It’s important that other pest management strategies in this greenhouse are used in such a way that they do not harm the Delphastus.

If you were going to tank mix chemical pesticides, you would of course read the label to check for compatibility before mixing products. The same concept applies when using living organisms for pest control. Whether you are using parasitoid wasps, predatory mites, microorganisms, or nematodes, you need to know whether your biocontrols are compatible with each other and any other pest management products you plan to use. For example, a biocontrol fungus might be killed if you tank mix it with (or apply it just before) a chemical fungicide. Insecticides (whether or not they are biological) could be harmful to natural enemy insects and mites. Even some beneficial insects are not compatible with each other because they may eat each other instead of (or in addition to) the pest.

It’s a good idea to keep an updated list of the products and organisms you plan to use for pest management, and their compatibility with each other. For biopesticides (remember the difference between “biopesticide” and “biocontrol”?), start by reading the label (see label excerpt below). You must follow all instructions you find there. Many manufacturers also provide lists, tables, databases, or apps to help you find compatibility information (some links at the end of this post). This is especially useful for insect, mite, and nematode natural enemies, which are not pesticides and do not have pesticide labels. When possible, obtain compatibility information from the manufacturer or supplier you will be using. Different strains of the same microorganism or nematode may have different sensitivities to chemicals.

Compatibility information from Preferal label
This excerpt from the label of the bioinsecticide Preferal provides some information on its compatibility with other products. All instructions on a pesticide label must be followed.

Remember that NY pesticide labels (including biopesticide labels) can be found through the NYSPAD system.

Below are some links to resources from several manufacturers and suppliers of biocontrol products. No endorsement of specific companies or products mentioned in this post is intended. If you know of a link to additional information that is missing, please let me know so that I can include it!

Beneficial nematodes from BASF – This chart describes compatibility of beneficial nematodes sold by BASF with natural enemies and pesticides. Note that only the genus name of each “biological” active ingredient is listed, and that over time, the names of some predatory mites (and whether they belong to the genus Amblyseius or Neoseiulus) have changed.

Biobest Side Effect Manual – This side effects manual is available either as an interactive website, or as an app. Choose pest management products by active ingredient or name of the commercial product (including the biocontrol microorganisms Beauveria bassiana and several types of Bacillus thuringiensis). The list of “beneficial organisms” to choose from includes bumble bees and nematodes, but not beneficial microorganisms (fungi, bacteria, and viruses). Select active ingredients/commercial products and beneficial organisms from both lists, then use the legend to interpret the compatibility information that is generated.

Compatibility of BioWorks products – Compatibility sheets are linked from each product page.

Koppert Side Effects Information – This information is available either as an interactive website, or as an app. Select beneficial organisms of interest (by either the Koppert product name or the Latin name). Select one or more “Agents” (pest management products) by either the trade name or the active ingredient. Click on Results, and use the Legend to interpret the output.

But does it work? Efficacy of biological control

yellow sticky card for monitoring insect pests in a greenhouse
Biocontrol should be preventative. This yellow sticky card lets you monitor which pests are present and when so that the correct biocontrol (or other management tool) can be used at the right time. It will also help you assess whether your management strategy is working.

If you are thinking about trying biological control, of course you want to know if it is effective. The short answer is, “Yes!” But of course it depends on which biocontrol organism you want to use (and how), which pest you want to manage, and where.

First, you should ask yourself a question: What do I hope to achieve? Some great reasons to use biocontrol for pest management include:

  • Protecting the environment and human health by using more environmentally-friendly pest management strategies
  • Reducing the number of chemical pesticide applications to a crop
  • Preventing (or dealing with) pesticide resistance
  • Meeting a need for a short REI (re-entry interval) or PHI (pre-harvest interval) on the crop
  • Biocontrols are the most effective (and cost-effective) management strategy (definitely true for some pests and settings!)

Second, in what context are you using biocontrol? Biocontrol is best used within a larger integrated pest management strategy. Are you using good sanitation and cultural practices (e.g., adequate but not excessive nutrition and water) that promote healthy plants? Are you regularly checking your plants so that you will notice pests when they are still infrequent (scouting)?

peppers in flooded field
Biocontrol should be used as part of an IPM plan. The excess rain and poorly-drained soil in this field make it unlikely that a biocontrol will be able to protect these peppers from a soil-borne disease.

Biocontrol should also be preventative (before pest pressure becomes high). If you are expecting to use only biological control to solve an already out-of-control pest problem, you will probably be disappointed. Similarly, if environmental conditions are very favorable for a pest, a biocontrol solution will probably be insufficient.

Each year, university researchers, extension staff, and private companies conduct efficacy trials to quantify how well pest management strategies work. Knowing how a biocontrol product/organism performed in these trials can help you decide if you want to try it on your farm or in your yard. It helps to know a little about how these trials are structured. Efficacy trials typically include some combination of the following types of control treatments:

  • non-treated control – plants are exposed to pests (either naturally, or deliberately by the researcher), but no pest management strategy is used; disease/damage severity should be highest in this treatment
  • chemical control – plants are exposed to pests, and a chemical pesticide is applied to manage the pest; sometimes an “industry standard” (what is typically used to manage that pest in that crop and setting) is designated by the author of the study; if no industry standard is designated, comparisons can still be made to the chemical treatment that worked best; disease/damage severity should be very low in this treatment
  • non-inoculated control – no pest pressure (i.e., plants were not deliberately exposed to the pest); sometimes disease or damage still occurs because of natural pest pressure, or because disease or insects spread from other treatments in the trial; disease/damage severity should be lowest in this treatment

Efficacy trials also include statistical analysis. In a nutshell, this analysis tells you whether two values are really different (often described as “statistically different”), or not. If two numbers are not statistically different from each other, it means that only by chance is one larger or smaller than the other. If you did the same experiment again, you might see a different relationship. One common way of expressing these differences is by using letters. If two treatments are assigned the same letter, then they are not statistically different. So in the example below, Bio1 is statistically different from Bio3 but neither Bio1 nor Bio3 is different from Bio2.

graph of sample efficacy trial results
An efficacy trial may compare biocontrol products (Bio1, Bio2, Bio3, and Bio4) to non-treated (high disease/damage), chemical (low disease/damage), and non-inoculated (low disease/damage) controls.

 

When interpreting an efficacy trial, you should compare a biocontrol of interest to the control treatments. Of course, it would be great to see biocontrol products that are just as effective as the chemical control (like Bio4), and sometimes they are. Sometimes, a biocontrol may be less effective than the chemical control, but more effective than taking no pest control action (like Bio3). Sometimes there’s so much variability (represented by the lines extending above and below the blue bars on the chart, called error bars), that a biocontrol product is not statistically different from either the non-treated control, or the chemical control (like Bio2). This makes it difficult to draw conclusions about how well the product worked.

But, it’s not always quite that simple. For example, in these efficacy trials, researchers deliberately expose plants to pests, and often they manipulate the environment to favor pest populations. For example, they might over-water plants to promote a soil-borne disease like damping off. While there can be value in assessing product efficacy in a “worst case scenario”, this may be much higher pest pressure than you are likely to encounter on your farm or in your yard. When looking at efficacy trials, you should consider:

  • How much disease/damage was observed on plants that were not protected in any way (non-treated control)? If it’s too low, it’s hard to be confident that the biocontrols being tested were effective, since even unprotected plants were pretty healthy.
  • How much did the most successful treatment (chemical control) reduce disease/damage? If even the “best” pest management strategy in the trial was not very effective, then pest pressure may have been too high, and it’s not surprising that the biocontrol was ineffective. If you practice good IPM, you likely won’t experience such high pest pressure.
  • How was the biocontrol applied (alone, or as part of a spray program with other products)? Applying single products in an efficacy trial can simplify interpretation, but may not mimic how you plan to use a biocontrol product. If a biocontrol was applied in combination with other products, you should compare the “biocontrol + other products” treatment to the “other products alone”  treatment to see what the biocontrol added to pest management.
  • What was your goal, again? For example, if you are hoping to replace one or two chemical applications in a larger spray program with a biocontrol, then a moderately effective biocontrol product (like Bio3) may meet this goal.

Because the efficacy of a biocontrol can depend a lot on the environment in which it is used (temperature, humidity, soil conditions, etc.), it’s also a good idea to initially try a new biocontrol in a small area of your farm or yard, and keep notes on what you did and how well it worked for you. You can modify your plan to find what works best for you. The manufacturer or distributor should be able to provide you with important details on how (and for how long) the biocontrol should be stored, and exactly how and when to apply it. And (as always!) if you are using a biocontrol that is also a pesticide (see previous post), make sure that you read, understand, and follow the label.

The following resources summarize efficacy results for biocontrol of plant diseases. As I find efficacy summaries of insect and mite pest biocontrol, I will add them. Or, feel free to suggest efficacy resources you know of in the comments!

If you plant it, they will come: Attracting natural enemies of pests

coreopsis flower (Coreopsis lanceolata)
This coreopsis flower (Coreopsis lanceolata) is more than just pretty; it also provides pollen and nectar for natural enemies to eat (when they aren’t eating pests!).

At this time of year, glossy catalogs start arriving in my mailbox full of pictures of all the beautiful fruits, vegetables, and flowers that I could grow after the snow melts. What these pictures don’t usually show are the arthropod (insect, mite, and related species) pests that can’t wait to eat what I plant. There are many IPM strategies you can use to fight back against these pests, and you can learn more here.

One of these strategies (and seldom is a single strategy sufficient) is to think about what else is growing near the vegetables, fruits, and flowers you want to protect. There aren’t just pest arthropods in your garden. These pests have natural enemies, too. If you provide good habitat for the natural enemies (including food and shelter), you will attract more natural enemies, and they are likely to consume more pests, protecting your plants. This is one way to practice conservation biocontrol – protecting and supporting the biocontrol organisms (natural enemies) that are already present.

So, what makes good habitat for natural enemies? In general, plants that bloom throughout the growing season (early spring to late fall) provide pollen and nectar to the natural enemies that use these as alternate food sources (in addition to pests). These plants also provide good shelter, both for natural enemies and the arthropods (including some pests) they feed on. As these natural enemies reproduce in the habitat you have created for them, they will also venture beyond this habitat and into your fruit, vegetable, and other flower plants, where they will eat more pests.

butterfly on purple coneflower (Echinacea purpurea)
This butterfly is finding nectar at a purple coneflower (Echinacea purpurea). Pollen and nectar are also important food sources for some natural enemies.

What is good habitat for natural enemies is also (in general) good habitat for pollinators. You have probably already heard how important pollinator protection is. Those glossy catalogs (or wherever else you buy your seeds or plants) likely sell species and varieties labeled as being “good for pollinators”. Just make sure you include plenty of variety. Because most plants (especially perennials) bloom for a limited time, you will need multiple species to ensure season-long blooms. Also, the variation in height and structure of the plants will provide diverse habitat for all of the different natural enemies you want to attract.

And what about protecting a larger area of plants (like a 5-acre field of pumpkins on a farm)? Will creating habitat for natural enemies help with pest control? The answer is complicated. It probably depends on a lot of things. How big the field is, how much habitat there is and where it’s located, which pests are a problem, and other pest management strategies (especially use of chemical pesticides) will have an impact. Research has shown that in some scenarios, yes, providing habitat for natural enemies can reduce some pest populations in some crops (one example).

Later this spring, I and two of my NYS IPM colleagues (Dr. Betsy Lamb and Brian Eshenaur) will set up a field experiment that will answer this question (over the next several years) in a Christmas tree planting. We will also compare different strategies for creating this habitat (seeds versus plants, and different weed control methods). Stay tuned for updates!

In the meantime, for suggestions on what flower species make good pollinator (and natural enemy) habitat, you can start by checking out lists of plants that provide good habitat for pollinators (also this one), or searchable databases of pollinator habitat plants. Your local Cornell Cooperative Extension office is another great resource. The Xerces Society also a resource on Habitat Planning for Beneficial Insects.