Category Archives: disease

What do biofungicides add to vegetable disease management? Part 1 – Introducing the project

butternut squash plants grown on a black plastic-covered raised bed
This summer we compared three biofungicides added to a conventional cucurbit powdery mildew management program in field trials conducted in western and eastern NY and on Long Island. Photo credit: Caitlin Vore, Cornell Vegetable Program

What we’re doing

This summer I have been working with great colleagues (Elizabeth Buck, Dr. Julie Kikkert, Dr. Margaret McGrath, Jud Reid, and Crystal Stewart) on a project funded by the New York Farm Viability Institute looking at the use of biofungicides (Remember what biofungicides are?) in vegetable disease management. Dr. Darcy Telenko (formerly of the Cornell Vegetable Program) helped plan the project before starting her new position at Purdue University, and Dr. Sarah Pethybridge has provided valuable advice based on her extensive work with white mold (including control with biofungicides). BASF, Bayer, BioWorks, Certis, Dow, and Marrone BioInnovations provided product for the field trials.

The project has two goals:

  1. Quantify what biofungicides add to management of cucurbit powdery mildew and white mold in terms of…
    – disease control
    – yield
    – plant health
    – economic value (comparing yield gains to fungicide costs)
  2. Evaluate the utility of NDVI (normalized difference vegetation index) as a measure of plant health and disease detection in fresh vegetables

Why this project?

For both diseases (cucurbit powdery mildew and white mold), we’re considering biofungicides used with other pest management – other biofungicides, conventional chemical fungicides, and/or cultural practices. Biofungicides are not expected to be silver bullets, and they work best when used in an IPM strategy. But when deciding whether or how to use them in your operation, it’s good to know what value you’re getting for the extra costs of purchasing and applying the products. This summer we ran trials in three major vegetable-producing regions of the state: western New York, eastern NY, and on Long Island.

Biofungicides for cucurbit powdery mildew

cucurbit powdery mildew on the upper side of a squash leaf
Cucurbit powdery mildew looks like a dusting of powdered sugar on the cucurbit leaf. These powdery spots start on the underside of the leaf, and then develop on the upper surface of the leaf, so excellent spray coverage is important. Photo credit: Amara Dunn, NYS IPM

For combatting cucurbit powdery mildew, we’re comparing three biofungicides: LifeGard (Bacillus mycoides isolate J), Regalia (extract from the giant knotweed plant Reynoutria sachalinensis), and Serifel (Bacillus amyloliquefaciens MBI 600). All three were applied weekly starting when the plants were small. Then, when the first signs of powdery mildew showed up, we started a rotation of conventional fungicides (Vivando, Quintec, and Luna Experience). These three treatments plus a rotation of all-organic fungicides (LifeGard, MilStop, Serifel, and a mineral oil) are being compared to two control treatments: the conventional fungicides alone, and plants that received no treatment for powdery mildew. We ran the trials on a variety of bushing acorn squash (‘Honey Bear’) that has intermediate resistance to powdery mildew.

Biofungicides for white mold

bean pod half rotted by white mold fungus
Most vegetable crops are susceptible to white mold, with legumes being among the most vulnerable. The name comes from the dense white “tufts” that the fungus forms. These develop into dark, hard sclerotia that can survive for years in the soil. Photo credit: Amara Dunn, NYS IPM

In the white mold trial, we’re looking at Double Nickel (Bacillus amyloliquefaciens strain D747) alone or in combination with Contans (Paraconiothyrium minitans strain CON/M/91-08; formerly Coniothyrium minitans). Next year we’ll look at these biofungicides in combination with reduced tillage at one site. Reduced tillage is another IPM strategy for white mold. The active ingredient in Contans is a fungus that eats the resting structures (sclerotia) of the fungus that causes the disease white mold. Because of this, it needs time to work, and is applied either in fall or spring. The goal is to reduce the number of sclerotia present in the next crop. Next year we’ll collect data on whether application of Contans reduced disease. In the meantime, during the 2018 growing season treatments we tested were Double Nickel, Cueva (an OMRI-approved copper) and no treatment for white mold on snap bean. Previous research by the EVADE Lab at Cornell AgriTech at The New York State Agricultural Experiment Station, Geneva, New York, has shown that Double Nickel is a promising biofungicide for white mold.

What is NDVI, anyway?

In a nutshell, the “normalized difference vegetation index” (NDVI) is a way to quantify how much healthy, green foliage is present. The device we used emits different types (wavelengths) of light (red and near infrared), and measures how much of each type of light is reflected back from the leaves of the plant. Leaves that are dark green and healthy reflect more infrared light and absorb a lot of red light. Less healthy leaves reflect less infrared light. A NDVI value closer to 1 indicates healthier plants. A NDVI value closer to 0 indicates less healthy plants (or more bare ground).

GreenSeeker device over a dark green (healthy) cucurbit plant and a light green (less healthy) cucurbit plant. Arrows show that red and infrared light are reflected differently from these two plants. NDVI values closer to 1 indicate a lot of healthy green leaves. NDVI values closer to 0 indicate less healthy (or fewer) leaves.
NDVI (normalized difference vegetation index) quantifies the amount of dark green foliage based on how much light of different wavelengths is reflected. It is used in some crops to decide when to apply fertilizer, or to help detect below-ground pests. Photo credit: Amara Dunn, NYS IPM

NDVI and similar indices are already used in other crops and in other places to help growers make decisions about when to fertilize, or to help detect parts of a field where a pest may be present. So far in NY, NDVI is not being widely used by fresh market vegetable growers for disease detection. Collecting NDVI data from this project will do two things:

  1. Help us quantify the health of plants. Even though NDVI is not a measure of disease, we would expect to see more healthy foliage if biofungicides are contributing to disease control.
  2. Provide some preliminary data to help us determine whether NDVI measurements could be useful to NY fresh vegetable growers.
people walking through a winter squash field
Growers and industry reps had a chance to visit the 2018 cucurbit powdery mildew field trials shortly before they were harvested. Photo credit: Amara Dunn, NYS IPM

Field meetings were held at each powdery mildew trial location so that local growers could see the trials and hear about the project. We’re currently wrapping up data analysis from the 2018 field season. You’ll be able to learn about results from the first year of this two-year project at winter meetings around NY, in extension newsletters, and here on this blog. Also, stay tuned for Part 2 of this post with details about how these biofungicides work (modes of action), and how to use them most effectively.

This post was written by Amara Dunn (NYS IPM), Sarah Pethybridge (Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University), and Darcy Telenko (Department of Botany & Plant Pathology, Purdue University).

Mix and Match: Compatibility of biocontrol with other pest management strategies

Delphastus eating whitefly
This small black Delphastus is helping to control whiteflies in a greenhouse. It’s important that other pest management strategies in this greenhouse are used in such a way that they do not harm the Delphastus.

If you were going to tank mix chemical pesticides, you would of course read the label to check for compatibility before mixing products. The same concept applies when using living organisms for pest control. Whether you are using parasitoid wasps, predatory mites, microorganisms, or nematodes, you need to know whether your biocontrols are compatible with each other and any other pest management products you plan to use. For example, a biocontrol fungus might be killed if you tank mix it with (or apply it just before) a chemical fungicide. Insecticides (whether or not they are biological) could be harmful to natural enemy insects and mites. Even some beneficial insects are not compatible with each other because they may eat each other instead of (or in addition to) the pest.

It’s a good idea to keep an updated list of the products and organisms you plan to use for pest management, and their compatibility with each other. For biopesticides (remember the difference between “biopesticide” and “biocontrol”?), start by reading the label (see label excerpt below). You must follow all instructions you find there. Many manufacturers also provide lists, tables, databases, or apps to help you find compatibility information (some links at the end of this post). This is especially useful for insect, mite, and nematode natural enemies, which are not pesticides and do not have pesticide labels. When possible, obtain compatibility information from the manufacturer or supplier you will be using. Different strains of the same microorganism or nematode may have different sensitivities to chemicals.

Compatibility information from Preferal label
This excerpt from the label of the bioinsecticide Preferal provides some information on its compatibility with other products. All instructions on a pesticide label must be followed.

Remember that NY pesticide labels (including biopesticide labels) can be found through the NYSPAD system.

Below are some links to resources from several manufacturers and suppliers of biocontrol products. No endorsement of specific companies or products mentioned in this post is intended. If you know of a link to additional information that is missing, please let me know so that I can include it!

Beneficial nematodes from BASF – This chart describes compatibility of beneficial nematodes sold by BASF with natural enemies and pesticides. Note that only the genus name of each “biological” active ingredient is listed, and that over time, the names of some predatory mites (and whether they belong to the genus Amblyseius or Neoseiulus) have changed.

BASF table describing compatibility
Screen shot of part of a table summarizing compatibility of BASF beneficial nematodes with other pest management tools (in this case, biocontrol insects and mites).

Biobest Side Effect Manual – This side effects manual is available either as an interactive website, or as an app. Choose pest management products by active ingredient or name of the commercial product (including the biocontrol microorganisms Beauveria bassiana and several types of Bacillus thuringiensis). The list of “beneficial organisms” to choose from includes bumble bees and nematodes, but not beneficial microorganisms (fungi, bacteria, and viruses). Select active ingredients/commercial products and beneficial organisms from both lists, then use the legend to interpret the compatibility information that is generated.

Biobest compatibility information
Screen shot from the web-based version of Biobest’s compatibility resource.

 

 

 

 

 

 

 

Compatibility of BioWorks products – Compatibility sheets are linked from each product page.

BioWorks compatibility information
A portion of one of the compatibility sheets provided by BioWorks for their products.

 

 

 

 

 

Koppert Side Effects Information – This information is available either as an interactive website, or as an app. Select beneficial organisms of interest (by either the Koppert product name or the Latin name). Select one or more “Agents” (pest management products) by either the trade name or the active ingredient. Click on Results, and use the Legend to interpret the output.

Koppert compatibility information
Screen shot from the web-based version of Koppert’s compatibility resource.