Disease Susceptibility of Brown Midrib (BMR) Silage Corn

Judith M. Kolkman1 , Rebecca J. Nelson1, 2, and Gary C. Bergstrom1
Sections of Plant Pathology and Plant-Microbe Biology1, and Plant Breeding and Genetics2 – School of Integrative Plant Science – Cornell University

What to know about BMR silage corn and diseases

Brown midrib (BMR) corn is a market class within silage corn that is desirable due to its significantly decreased lignin content.  As the name suggests, midrib veins of BMR corn leaves have a distinctive brown color.  Decreased lignin is desirable in corn silage because it increases feed digestibility for ruminant animals.  BMR corn carries naturally derived mutations in single genes that affect the plant’s lignin biosynthetic pathway.

The biosynthetic pathway that produces lignin also makes compounds that contribute to active plant defense mechanisms.  Some of these active defenses include small molecules called secondary metabolites that confer resistance against pests and diseases.  Structurally, lignin is a major component of the cell wall and serves as a barrier against fungal pathogens.  Lignin is also actively produced to strengthen cell walls that are being attacked.

To date, six BMR mutations have been identified in corn, and are designated as bm1 through bm6.  The causal gene has been identified for five of the BMR mutations.  Lines carrying two of these mutations, bm1 and bm3, are used as inbred parents for the production of commercially available hybrids known as BMR1 and BMR3, respectively.  Commercial BMR silage corn hybrids have been gaining in popularity.

There is concern that the same bm gene(s) that confer greater digestibility to BMR silage hybrids may also confer increased susceptibility to fungal diseases.  Some of these hybrids are more vulnerable to stalk lodging.  Northern leaf blight severely affected commercial BMR hybrids in 2013 and other recent growing seasons.

To determine the effect of the brown midrib mutations on disease susceptibility, we used replicated trials across multiple years to test the reaction of bm1 – bm4 mutants in a uniform inbred line background, W64A, to leaf, stalk and ear diseases (Fig. 1, Fig. 2 and Fig. 3).  Corn lines containing the four BMR mutations were all found to have heightened susceptibility to foliar fungal diseases, including northern leaf blight, gray leaf spot and anthracnose leaf blight (Fig. 1 and Fig. 2).

diseased corn leaves
Figure 1. Examples of lesions of (left to right): northern leaf blight, anthracnose leaf blight, Stewart’s bacterial wilt and gray leaf spot in corn.
graphs of corn disease reactions
Figure 2. Reactions to foliar fungal (NLB, GLS and ALB) and bacterial (SW) diseases in W64A inbred lines containing bm1, bm2, bm3 or bm4 mutations in comparison with W64A which does not contain a BMR mutation.
Graphs of disease reactions in corn
Figure 3. Reactions to anthracnose stalk rot and Gibberella ear rot in W64A inbred lines containing bm1, bm2, bm3 or bm4 mutations in comparison with W64A which does not contain a BMR mutation.

Figure 4 depicts a dramatic increase in W64A with the bm3 mutation.  The lines were also found to be more susceptible to the foliar bacterial disease, Stewart’s bacterial wilt (Fig. 2).  After two years of trials, our evidence suggests that BMR corn inbreds have higher susceptiblity to anthracnose stalk rot as well (Fig. 3).  Additionally, the bm1 and bm3 containing inbreds were more susceptible to Gibberella ear rot, caused by Fusarium graminearum, when compared to their non-BMR counterparts (Fig. 3).

diseased corn comparison
Figure 4. Increased severity in an inoculated trial of northern leaf blight in a W64A corn inbred with the bm3 gene (right) compared to a W64A inbred lacking the mutant gene (left).

The benefits of BMR silage corn are huge for the dairy industry.  While individual hybrids may vary, BMR corn, appears to be more susceptible to diseases than non-BMR corn. The degree of susceptibility does vary by bm mutation and specific pathogen (Fig. 2 and Fig. 3).  Breeders are constantly working to improve disease tolerance, and disease ratings should be factored into hybrid choices.  BMR hybrids in the market show a wide range of suceptibilities to individual diseases.

How to manage diseases in BMR silage hybrids

Knowing that BMR silage corn can be more vulnerable to foliar, stalk, and ear diseases means that a proactive and integrated strategy is needed to maintain optimal plant health in these hybrids.  Elements of integrated management include:

Be aware of corn diseases on your farm and in your area.  Scout your fields annually for foliar diseases from tassel emergence through grain formation.  Check for ear rots (by pulling back husks) and stalk rots (squeeze lower stalks or attempt to push stalks over) prior to harvest.  Seeing diseases even late in the season gives you an indication of what pathogens may survive in corn residues into the next growing season and helps you to plan rotations and select hybrids.

Fungi that cause anthracnose, gray leaf spot, northern leaf blight, and Gibberella ear rot and stalk rot survive between crop seasons in corn residues on the soil surface; therefore rotation of corn with non-host crops can help to reduce the spore inoculum potential for these diseases.  Northern leaf blight has been the most widespread and injurious foliar disease in New York in the past decade and can be a problem anywhere in any given year.

Consider disease susceptibility when selecting BMR hybrids. Select BMR hybrids with the least susceptibility to specific diseases that have been problematic on your farm or in your region. If disease risk is extreme, e.g., in a humid river valley with a history of severe gray leaf spot, it may be preferable to grow non-BMR hybrids with documented resistance.

BMR hybrids, especially BMR1 and BMR3, have the potential to have severe ear rot and mycotoxin contamination in years with persistent moisture during silk emergence.  Be sure to check seed company guides for the latest disease ratings for BMR hybrids.

Apply foliar fungicide based on disease detection and forecast risk. There is a wide choice of foliar fungicide products labeled for control of fungal leaf blights in New York.  Table 3.5.1 in the 2020 Cornell Guide for Integrated Field Crop Management (https://www.cornellstore.com/2020-PMEP-Guide-for-Integrated-Field-Crop-Mgmt) notes the relative efficacy of labeled fungicides against different corn diseases.  To slow down the development of resistance to fungicides in pathogen populations, it is best  to use products with different modes of action (FRAC groups) in alternating years or to apply combination products with more than one mode of action.

The optimal timing for applying foliar fungicides is between tassel emergence (VT) and brown silk (R2) stages.  Observation of foliar fungal diseases in the middle leaf canopy (at lowest ear level) and a forecast of significant precipitation in the following week are the best indicators that fungicide application will be result in disease suppression and yield increase.  Suppression of foliar diseases also helps to preserve stalk health, standability, and quality, including lower levels of fungus-produced mycotoxins.

Consider longer term and regional effects of growing BMR hybrids. Year after year of growing a susceptible BMR hybrid can increase the disease inoculum load in a particular field and locale, thus affecting neighboring fields of non-BMR silage, dent, and sweet corn.  Occasional rotation out of BMR corn should be considered.

Summary

BMR silage corn is increasing in popularity and acreage as it provides a high quality, digestible feedstock for dairy nutrition.  Its positive attributes need to be balanced with proactive disease management to insure plant health and sustained productivity in dairy cropping systems.

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture Hatch accession #1004040.

Print Friendly, PDF & Email

What’s Cropping Up? Volume 30, No. 3 – May/June 2020

The full version of What’s Cropping Up? Volume 30 No. 3 is available as a downloadable PDF on issuu. This issue includes links to COVID-19 resources on the back page. And as always, individual articles are available below:

Print Friendly, PDF & Email

What’s Cropping Up? Volume 30 No. 2 – March/April 2020 Now Available!

New York State Soil Health Characterization | Part I: Soil Health and Texture

Joseph Amsili, Harold van Es, Bob Schindelbeck, and Kirsten Kurtz
Soil and Crop Sciences Section, Cornell University

Take-aways:

    • Soil biological indicators (organic matter, active carbon and respiration) were higher in finer textured soils than coarser textured soils, but organic matter quality was higher in coarser textured soils.
    • Soil texture exerted a strong control on a soil’s available water capacity.
    • Organic matter improvements are more likely to increase available water capacity in coarse textured soils compared to fine textured categories.

As progress is made in characterizing the biological and physical health of soils nationwide, soil health labs will be able to develop regionally specific scoring functions that correspond to inherent differences in soil properties and processes, which are shaped by the complex interplay of local climate, geology, biology, and time. The Cornell Soil Health Program has recognized this need and is developing scoring functions by region, soil type, and cropping system. Naturally, we have begun these efforts by focusing on New York State soils. In this first preview of the New York State Soil Health Characterization Report, we focus on the effects of soil texture on biological and physical soil health parameters. Stay tuned for the full technical report, titled “New York State Soil Health Characterization Report”, which will be published soon.

Methods
The Cornell Soil Health Laboratory analyzed 1,456 samples from across New York State between 2014-2018. Soil samples were analyzed for the standard Comprehensive Analysis of Soil Health (CASH) package, which included two physical indicators – wet aggregate stability (AgStab), and available water capacity (AWC); four biological indicators – soil organic matter (SOM), active carbon (ActC), autoclavable citrate extractable protein (Protein), and respiration (Resp); and seven chemical measurements. Results were summarized by four textural groups: coarse, loam, silt loam, and fine (Figure 1). Additionally, NY SH results were compared across five cropping systems which included annual grain, dairy system, process vegetables, mixed vegetables, and pasture (Part II will include a summary of the effects of cropping systems on soil health).

Soil texture chart
Figure 1. Soil health indicators were characterized by coarse (sand, loamy sand, sandy loam), loam (sandy clay loam, loam), silt loam (silt loam, silt), and fine (sandy clay, clay loam, silty clay loam, silty clay, clay) texture groups.

Results and Discussion
Soil texture is a dominant inherent soil property that exerts strong controls on a soil’s ability to function. Specifically, soil texture influences the amount of storable carbon and nutrients, a soil’s water holding capacity, erodibility, and drainage, and the habitat that soil provides to organisms. In order to evaluate the impacts of human land management (tillage, crop rotation, organic amendments) on the soil, it’s critical to understand the effects of the underlying inherent soil properties, like soil texture, on these soil health parameters.

Effects of soil texture on biological soil health indicators

Soil texture influences the quantity and quality of organic matter a soil can hold. Soils with higher concentrations of silt and clay (fine-textured) can store more organic matter than sandy (coarse-textured) soils due to the large amount of surface area available to bind with organic molecules. In the NYS database, SOM, ActC, and Resp were highest in fine textured soils, followed by silt loam, loam, and coarse textured soils. Fine textured soils in fact had 79%, 59%, and 56% higher SOM, Resp, and Act C than coarse textured soils, respectively (Table 1). Protein did not follow the pattern of an increasing concentration in finer texture groups. This is likely because it is more difficult to extract proteins from soils with high amounts of clay. Additionally, two ratios, Protein/SOM and ActC/SOM, exhibited lower values in finer textured soils (data not shown), which also suggests a lower ability to extract protein and active carbon in fine textured soils despite high OM levels. Alternatively, it suggests higher proportions of higher-quality organic carbon and nitrogen relative to the stable organic matter, i.e., relatively more “fresh” organic matter than stable mineral-bound organic matter in coarse textured soils.

Biological soil health indicators table

Effects of soil texture on physical soil health indicators

Soil texture exerts a dominant control on a soil’s available water capacity, which is the amount of water that a soil can hold and make available to plants. Coarse textured soils store the least amount of water because large pores between sand particles are unable to hold on to water against gravity. Specifically, as sand content increases, AWC goes down (r = -0.70). In contrast, clayey soils can store the most water, but some of that is tightly held in micropores and plants can’t access it. Therefore, soils with intermediate textures, like silt loams and to a slightly lesser extent loams, are known to store the most plant available water. We indeed found that silt content was positively correlated with AWC (r = 0.72), and silt loams and silty clay loam soils had the highest AWC. Silt loam soils had 273%, 139%, 47%, 28%, higher AWC than sand, loamy sand, sandy loam, and loam soil textures (Figure 2).

The strong textural control on AWC has implications for trying to improve a soil’s AWC with sustainable soil management strategies. The claim that, “one percent of organic matter in the top six inches of soil would hold approximately 27,000 gallons of water per acre” is often used to promote soil organic matter management. While this number is likely an over exaggeration of reality as evidenced by a recent study by Libohova, et al, 2018, who found that this number was closer to 2,850 gallons of available water stored per acre, it is true that increasing SOM is an important strategy to increase AWC. Furthermore, our research and other’s research show that SOM was more strongly related to AWC in coarse textured soils (r = 0.48) compared to loam (r = 0.14) or silt loam (r = 0.12) textured soils. This finding demonstrates that improved organic matter management can lead to increases in AWC in coarse textured soils to a much greater extent than for silt loams or finer soil textures.

Available water capacity chart
Figure 2. Bar chart of mean AWC for different soil texture classes. Error bars represent 1 SD of the mean. Unlike the other soil health indicators in the Cornell Soil Health Test, AWC was highly related to soil texture to the degree that more texture classes were required to understand the effect of soil texture on AWC.

Conclusions
Soil texture is a critical inherent soil property that exerts strong control on a soil’s ability to function, including its potential to store organic matter and retain plant available water. For biological indicators, SOM, ActC, and Resp values were higher in finer texture groups. Furthermore, AWC, an important physical indicator, was strongly controlled by texture. Our data suggest that coarse textured soils with low inherent AWC respond to increases in SOM to a much larger degree than silt loam soils. This NYS soil health database analysis demonstrates that soil texture is an essential variable to include in developing soil health targets at the policy or conservation planner level. Stay tuned for the full technical report titled, “New York State Soil Health Characterization Report” and for part II in the next WCU issue on the effects of cropping system on soil health indicators.

Acknowledgements
We acknowledge support from the New York State Environmental Protection Fund (administered through the Department of New York Agriculture and Markets).

Print Friendly, PDF & Email

Controlling Herbicide Resistant Weeds in Soybeans: 2019 Trials

Project Leaders: Bryan Brown, NYS IPM Program; Venancio Fernandez, Bayer Crop Sciences; Mike Hunter, Cornell Cooperative Extension; Jeff Miller, Oneida County Cooperative Extension; Mike Stanyard, Cornell Cooperative Extension

Collaborators: Dan Conable, Preferred Quality Grain LLC; Jaime Cummings, NYS IPM Program; Antonio DiTommaso, Cornell University; Quentin Good, Quentin Good Farms; Clinton van Hatten, Flowing Spring Farm; Kathleen Howard, Cornell University; Julie Kikkert, Cornell Cooperative Extension; Chuck Kyle, Preferred Quality Grain LLC; Grace Marshall, NYS IPM Program; Scott Morris, Cornell University; Ali Nafchi, Cornell Cooperative Extension; Jodi Putman, Cornell Cooperative Extension; Joshua Putman, Cornell Cooperative Extension; Emily Reiss, Kreher Family Farms; Matthew Ryan, Cornell University; Lynn Sosnoskie, Cornell University; Ken Wise, NYS IPM Program

Summary:
Herbicide resistant weeds have become a major problem for New York soybean farmers. This project aimed to regain control of these weeds through a mix of chemical, physical, and electrical tactics. From our replicated field trials attempting to control waterhemp in soybeans, the programs that included herbicides from WSSA groups 4, 14, or 15 were most effective, and our only treatment that provided 100% control included all three of those groups. Row cultivation performed well between-rows but missed some in-row weeds. Soybean yields generally reflected the effectiveness of each weed control treatment, with untreated plots incurring a 56% yield loss. Unfortunately, the most effective two-pass treatments were also the most expensive. In a separate demonstration, our informal evaluation of an electric discharge system was successful, with most of the herbicide resistant horseweed (marestail) exhibiting complete necrosis two weeks after application.

Background and justification:
In the past few years, herbicide resistant weeds have become a large problem for New York soybean farmers (Figure 1). Horseweed that is likely resistant to glyphosate (WSSA 9) and ALS inhibitor (WSSA 2) herbicides has spread through much of the state. Herbicide resistant waterhemp, which was initially found in a few isolated cases where farms had purchased contaminated inputs or equipment from other states, has now been observed in 12 counties. Waterhemp is more competitive than horseweed and based on our initial greenhouse spray chamber trials, it is likely resistant to glyphosate, ALS inhibitors, and photosystem II inhibitors (WSSA 5). In Seneca County NY, waterhemp was reported to have caused 50% yield loss in a field where the farmer had attempted to control it with several different herbicide applications.

Control of weeds that have exhibited herbicide resistance in other states has been improved by adding more herbicide sites of action, or WSSA groups, to the spray mixes – especially if more than one effective herbicide group is used – such as synthetic auxins (WSSA 4), PPO Inhibitors (WSSA 14), or long chain fatty acid inhibitors (WSSA 15). There has also been an increased emphasis on residual herbicide applications to decrease the burden on the post-emergence applications. Furthermore, due to the extended emergence period of waterhemp, residual chemistries are recommended additions to post-emergence applications.

Beyond the diversification of herbicides, non-chemical tactics are also necessary. Horseweed and waterhemp emerge from very small seeds and are susceptible to physical control through tillage/cultivation or suppression by cover crop residue. Due to the short longevity of both species’ seeds in soil, weed seedbank manipulation, sanitation, and practices that limit seed dispersal are also effective. In response to herbicide resistant weeds, one tactic that has been gaining in popularity in the last few years is the use of electrical discharge systems, which involve a front-mounted rod charged by a PTO-powered generator that is driven over the crop to electrocute weeds that escaped earlier controls.

In an attempt to regain control of these herbicide-resistant weeds in New York, we evaluated several strategies that integrated chemical, physical, and electrical tactics.

Objectives:
Objective 1. Evaluate the effectiveness of several different programs for controlling waterhemp in soybeans.

Objective 2. Evaluate the potential for an electrical discharge system to control weeds that survived prior chemical control efforts in soybeans.

Weeds in soybean field
Figure 1. Waterhemp competing with soybeans at a farm in Seneca County, NY.

Procedures:
Objective 1.

Two trial sites were established. Site A was in Seneca County, NY on a field of Odessa silt loam soil where waterhemp had survived various herbicide applications and produced seed in 2018. In 2019, the ground was prepared for planting with a field cultivator on May 22, and planted with soybeans (Channel 2119R2X, maturity group 2.1) on May 24. Pre-emergence applications were made on May 27. Post-emergence treatments were applied on July 8. All treatments are listed in Table 1. For fertilizer, muriate of potash (0-0-60, 125 lbs K2O/A) was applied prior to tillage and urea nitrogen (46-0-0, 100 lbs N/A) was broadcast on July 12.

Table of herbicides for use in soybeansSite B was in Oneida County, NY on a field of Conesus silt loam soil where a large patch of waterhemp had escaped herbicide applications and was hand removed the previous year. In 2019, soybeans (Asgrow 19×8, maturity group 1.9) were planted no-till on May 22 immediately followed by pre-emergence applications. Post-emergence treatments were applied July 5. All treatments listed in Table 1 except for treatments 4 and 8 were implemented at Site B. For fertility, muriate of potash (0-0-60, 120 lbs K2O/A) was applied prior to planting and starter fertilizer added 20 lbs N/A, 60 lbs P2O5/A, and 20 lbs K2O/A.

Plots were 25’ long and 10’ wide. Each treatment was replicated four times per site in a randomized complete block design. Spraying was conducted using a backpack CO2 sprayer with a 10’ boom. Spray volume was 20 gal/A applied at 40 psi. Row cultivation was achieved using a Double Wheel Hoe (Hoss Tools) with two staggered 6” sweeps (12” effective width). Two passes were made per row so that 24” of the 30” rows were cultivated.

Weed control was assessed in mid-August by collecting all aboveground weed biomass within a 2 ft2 quadrat. The quadrat was used four times per plot, placed randomly in the two middle rows of each plot. Weeds were placed in paper bags and dried at 113 degrees F for 7 days, then weighed. Control was calculated by subtracting the biomass of each treated plot from biomass of the untreated plots, dividing by the biomass of the untreated plots, and multiplying by 100. All waterhemp was manually removed immediately after the weed control assessments in order to prevent it from producing seeds.

Soybean yield was measured in mid-October by hand harvesting the pods from 10-row-feet of a middle row of each plot. Beans were separated from pods and collected using an Almaco thresher, then weighed. Yield loss in the treatments with single herbicide sites of action was determined by comparison to the more extensive treatments (Treatments 6-13). Yield loss of Treatment 11 was determined by comparison to the other extensive treatments. To provide an economic basis for comparison of each treatment, costs were estimated based on personal communications with several local custom applicators.

Objective 2.

In 2019, a 20-foot-wide electrical discharge system (“Weed Zapper ANNIHILATOR 8R30,” Old School Manufacturing LLC) was used in Cato, NY on August 1 in a soybean (R1) field with several different weed species that had survived an earlier herbicide application and were protruding up to 2’ above the crop canopy. The tractor was operated at 3 mph with 1000 rpm PTO speed, allowing the electrical discharge system to generate about 500 volts and up to 200 amps of alternating current electricity. Weed mortality was not evident on the day of implementation, therefore we returned on August 13 to informally assess control.

Results and discussion:
Weed control was greatest for the two-pass treatments (Table 2) and for the treatments that included more than one herbicide from WSSA groups other than 2, 5, and 9. One exception was that the addition of Warrant to the tank mix of Roundup and XtendiMax may have caused a slight antagonistic effect on waterhemp control.

Site A did not have complete soybean canopy closure, which likely reduced the effectiveness of most treatments. Additionally, much of the waterhemp present in the post-emergence applications was likely larger than the suggested maximum height of 4”.

Although waterhemp was abundant at Site B in 2018, hand removal efforts prevented most of the weed seed production and very little waterhemp emerged for the trial in 2019. Therefore, waterhemp control is not shown for Site B. Conversely, few weeds other than waterhemp were present at Site A.

Table of waterhemp effectiveness by treatmentSoybean yield at Site A generally reflected effectiveness of waterhemp control. Yield losses would likely have been greater if the waterhemp had not been removed in mid-August. We found yield losses in Treatments 1, 2, 3, and 5 of 56%, 26%, 34%, and 20% respectively. Yields at Site B were less effected, reflecting less weed competition. Crop injury was visible from Cobra, with yield losses of 12% and 17% at Site A and Site B, respectively. Yield loss would likely have been greater in most treatments if waterhemp had not been manually removed in mid-August to prevent seed production.

 The total cost for the materials and application of the more extensive treatments was generally more expensive (Table 2). But given that uncontrolled waterhemp could result in a loss of $300/A, more expensive weed control programs are justified. Even the most expensive treatment ($75/A) may make economic sense due to the short-lived seeds of waterhemp. That treatment provided 100% control of waterhemp, preventing the return of waterhemp seeds to the soil, thereby allowing the depletion of most of the waterhemp seedbank in four years (Mark Loux, personal communication) and return to less expensive control programs. Nonetheless, additional treatments will be investigated in 2020 to attempt to achieve 100% control with less cost.

Objective 2.

The electrical discharge system was very effective in controlling the contacted horseweed (marestail). Complete necrosis was observed for most treated plants. Some plants had green leaves near their base, but no new growth or lateral branching was observed. Common ragweed was also very effectively controlled. Annual sowthistle was mostly controlled, but green leaves persisted on about 25% of the plant. The highest branches of bull thistle (a biennial) exhibited complete necrosis, but lower branches that were untouched by the weed zapper remained unharmed.

It was evident that our August 1 application of the electrical discharge system was earlier than optimal because most of the horseweed had not yet exceeded the height of the crop canopy and was not contacted by the electrified rod. Therefore, to maximize the weed control from a single pass, scouting should be used to delay the application as late as possible, but before the weeds initiate seed production – likely mid- to late-August for most New York farms. For interested farmers, custom application of the electrical discharge system is available through Preferred Quality Grain LLC of Cato, NY.

Project location(s):
Central and western New York.

Samples of resources developed:
Online articles:
Brown, B., DiTommaso, A., Howard, K., Hunter, M., Miller, J., Morris, S., Putman, J., Sikkema, P., Stanyard, M. Waterhemp Herbicide Resistance Tests: Preliminary Results. Cornell Field Crops Blog. May 15, 2019. https://blogs.cornell.edu/ccefieldcropnews/2019/05/15/waterhemp-herbicide-resistance-tests-preliminary-results/

Video:
Marshall, G., Brown, B. Waterhemp Control in Soybeans: 2019 Trials. NYSIPM. December 20, 2019. Accessed December 28, 2019. https://www.youtube.com/watch?v=WSAmMn2P7Wc

Marshall, G., Brown, B. Weed Zapper Demo 2019. NYSIPM. October 1, 2019. Accessed December 28, 2019. https://www.youtube.com/watch?v=GVB33hB8Nes

Acknowledgements:
Thank you to the New York Farm Viability Institute for supporting this project.

Disclaimer: Read pesticide labels prior to use. The information contained here is not a substitute for a pesticide label. Trade names used herein are for convenience only; no endorsement of products is intended, nor is criticism of unnamed products implied. Laws and labels change. It is your responsibility to use pesticides legally. Always consult with your local Cooperative Extension office for legal and recommended practices and products. cce.cornell.edu/localoffices

Print Friendly, PDF & Email

Effective Waterhemp Control Programs and Compatibility with Interseeding in Corn: 2019 Trials

Project Leaders: Bryan Brown, NYS IPM Program; Venancio Fernandez, Bayer Crop Sciences; Mike Hunter, Cornell Cooperative Extension; Jeff Miller, Oneida County Cooperative Extension; Mike Stanyard, Cornell Cooperative Extension

Collaborators: Derek Conway, Conway Farms; Jaime Cummings, NYS IPM Program; Quentin Good, Quentin Good Farms; Antonio DiTommaso, Cornell University; Michael Durant, Lewis County Soil and Water Conservation District; Kathleen Howard, Cornell University; Grace Marshall, NYS IPM Program; Scott Morris, Cornell University; Ali Nafchi, Cornell Cooperative Extension; Jodi Putman, Cornell Cooperative Extension; Joshua Putman, Cornell Cooperative Extension; Matthew Ryan, Cornell University; Lynn Sosnoskie, Cornell University; Ken Wise, NYS IPM Program

Summary:
Herbicide resistant waterhemp has spread into New York and caused yield losses for corn farmers. This project aimed to find ways to regain control of this weed in corn and determine the compatibility of more extensive herbicide programs with interseeded annual ryegrass. Our field trial included several treatments that effectively controlled waterhemp. One of the most effective treatments was an integrated program utilizing a reduced rate herbicide, row cultivation, and interseeding. This treatment was slightly more expensive than the other two-pass treatments but the cost may be offset by the benefits of cover cropping. Of the several residual herbicides that were compatible with interseeded annual ryegrass, Callisto provided the most effective control of waterhemp.

weed growing under corn
Figure 1. Waterhemp competing with corn at a farm in Seneca County, NY.

Background and justification:
In the past few years, herbicide resistant waterhemp has expanded into New York and is now present in 12 counties at the time of this publication. Corn farmers have reported yield losses of 20% due to this weed (Figure 1), even after herbicide applications. Our greenhouse spray chamber tests of waterhemp from three different locations in New York indicate that it is likely resistant to herbicides from WSSA groups 2, 5, and 9 (ALS inhibitors, photosystem II inhibitors, and EPSPS inhibitors, respectively). Effective control programs in other states have relied on herbicides from other groups as well as additional physical or cultural tactics. Pre-emergence applications of residual herbicides are often recommended in order to reduce both the burden placed on post-emergence applications.

However, residual herbicides can sometimes cause injury to succeeding crops. Cover crops interseeded into a corn crop are at particular risk of injury. Interseeding has grown in popularity as a way to include a winter cover crop, which can benefit soil health, reduce erosion, and provide weed suppressive residue. Interseeding typically occurs at corn growth stage V5 rather than waiting until after corn harvest, when it is oftentimes too late. Several prominent New York farmers have bought or built their own interseeders. Additionally, the Lewis County Soil and Water Conservation District and the Genesee River Coalition of Conservation Districts each have interseeders available for custom application.

Objectives:
Objective 1. Evaluate the effectiveness of several different programs in controlling waterhemp in corn.

Objective 2. Assess the compatibility of residual herbicides with an interseeded cover crop.

Procedures:
Objective 1.
The trial site was in Seneca County, NY on a field of Odessa silt loam soil where waterhemp had survived various herbicide applications and produced seed in 2018. In 2019, the ground was prepared for planting with a field cultivator on June 4, and planted on June 7. Pre-emergence applications were made after planting on June 7. Cultivation and interseeding occurred on July 12, while the other post-emergence treatments were applied on July 15. All treatments are listed in Table 1. For fertilizer, muriate of potash (0-0-60, 125 lbs K2O/A) was applied prior to tillage and urea nitrogen (46-0-0, 100 lbs N/A) was broadcast on July 12.

Plots were 25’ long and 10’ wide. Each treatment was replicated four times in a randomized complete block design. Spraying was conducted using a backpack CO2 sprayer with a 10’ boom. Spray volume was 20 gal/A applied at 40 psi. Row cultivation was achieved using a Double Wheel Hoe (Hoss Tools) with two staggered 6” sweeps (12” effective width). Two passes were made per row so that 24” of the 30” rows were cultivated. For Objective 1, interseeding was established by hand broadcasting annual ryegrass (Mercury Brand, “Ribeye”) at 20 lb/A.

Weed control was assessed on August 15 by collecting all aboveground weed biomass within a 2 ft2 quadrat. The quadrat was used four times per plot, placed randomly in the two middle rows of each plot. Weeds were placed in paper bags and dried at 113 degrees F for 7 days, then weighed. Control was calculated by subtracting the biomass of each treated plot from biomass of the untreated plots, dividing by the biomass of the untreated plots, and multiplying by 100. Waterhemp was the dominant species present in this trial. Other species did not provide enough data for comparison. All waterhemp was manually removed immediately after the weed control assessments in order to prevent it from producing seeds.

Table of weed herbicides for waterhemp in cornCorn grain yield was measured by first harvesting and weighing all ears in 10’ of a middle row of each plot on October 25. Weights were then adjusted based on the ratio of total ear weight to grain weight and then adjusted to 15.5% moisture based on subsamples that were completely dried (25 days at 113 degrees F). To provide an economic basis for comparison of each treatment, costs were estimated based on personal communications with several local custom applicators.

Objective 2.
This objective was conducted in Lewis County, NY on a field that did not contain any waterhemp. The field (Homer silt loam soil) was tilled June 9 and planted with silage corn (Pioneer, 95 day) on June 10 with 3 gal/A starter fertilizer (7-21-7). Pre-emergence herbicides were applied on June 12 and post-emergence on July 8. All treatments are listed in Table 2. Interseeding was conducted on July 10 using a 15’ interseeder (Interseeder Technologies) with three drills between each corn row operating at 0.5” depth. Annual ryegrass (Mercury Brand, “Ribeye”) was interseeded at 20 lb/A.

Table of pre-emergence herbicides for waterhemp with interseeded annual ryegrassWeed control of the pre-emergence herbicides was evaluated on July 7 by visually estimating the percentage of the ground covered by the most prevalent species or categories – common lambsquarters, velvetleaf, other broadleaf species, and monocot species. This was done using the same quadrat system described above and control was calculated in a similar manner.

Performance of the annual ryegrass was assessed on September 20 by collecting the aboveground biomass using the quadrat system and drying samples at 113 degrees F for 7 days before weighing. Although there would have been more cover crop biomass later in the fall, silage harvest would likely have altered the results.

Results and discussion:

Objective 1.
Waterhemp control was most effective in treatments that utilized herbicides from WSSA groups other than 2, 5, or 9, or treatments that integrated non-chemical tactics. The pre-emergence-only and two-pass treatments were more effective than the post-emergence-only treatments. It was unexpected that the treatment with a reduced rate of Callisto followed by row cultivation and interseeding would control 100% of the waterhemp since most in-row weeds would have been uncontrolled by cultivation and the competition from the interseeded annual ryegrass would have been minimal.

Table of effectiveness and cost for herbicide treatments of waterhempBoth the untreated control and the treatment of ResolveQ yielded 10% less than the treatments with more than one herbicide or tactic. Yield loss would likely have been greater in most treatments if waterhemp had not been manually removed in mid-August to prevent seed production. From personal communications with NY corn farmers who have waterhemp in their fields, a 20% yield loss can be expected in fields with poor control.

The two-pass programs were the most expensive, but were also the only treatments to offer 100% control of waterhemp. Several one-pass treatments offered 99% control with less expense, but the remaining 1% of uncontrolled waterhemp could likely produce enough seed to perpetuate the population.

Objective 2.
Early-season weed control was most effective for treatments containing Acuron or Callisto (Table 4) even though reduced rates were used. Weed control for the other treatments varied by weed species, which reflects their more common use in mixtures. Dual II Magnum and Warrant performed somewhat similarly, which was expected because they are both in WSSA group 15.

Annual ryegrass biomass of the grower standard (Treatment 2) was similar to several of the treatments containing residual herbicides (Table 4). Treatments with pre-emergence applications of Dual II Magnum, Sharpen, and Acuron affected annual ryegrass biomass, although the injury from Sharpen may have been confounded by the addition of ResolveQ in the post-emergence application. More injury to annual ryegrass was expected from Atrazine, but a heavy rain may have lessened its effect. A rainfall gage at the field showed that in the four weeks between the pre-emergence applications and the interseeding, the field received nearly 4” of rain, with 2” on June 20. Likewise, the post-emergence use of row cultivation in Treatment 10 may have lessened the effect of Acuron on annual ryegrass. Overall, Callisto stood out as the residual product that did not injure the annual ryegrass but also controlled waterhemp effectively in Objective 1.

Table of effectiveness of treatment on early season weed controlProject location(s):
Northern, western, and central New York.

Samples of resources developed:
Online articles:
Brown, B., DiTommaso, A., Howard, K., Hunter, M., Miller, J., Morris, S., Putman, J., Sikkema, P., Stanyard, M. Waterhemp Herbicide Resistance Tests: Preliminary Results. Cornell Field Crops Blog. May 15, 2019. https://blogs.cornell.edu/ccefieldcropnews/2019/05/15/waterhemp-herbicide-resistance-tests-preliminary-results/

Video:
Marshall, G., Brown, B. Waterhemp Control in Corn: 2019 Trials. NYSIPM. December 20, 2019. Accessed December 28, 2019. https://www.youtube.com/watch?v=8NQ6S39uQ-8&t=17s

Acknowledgements:
Thank you to the New York Farm Viability Institute for supporting this project.

Disclaimer: Read pesticide labels prior to use. The information contained here is not a substitute for a pesticide label. Trade names used herein are for convenience only; no endorsement of products is intended, nor is criticism of unnamed products implied. Laws and labels change. It is your responsibility to use pesticides legally. Always consult with your local Cooperative Extension office for legal and recommended practices and products. cce.cornell.edu/localoffices

 

Print Friendly, PDF & Email