What's Cropping Up? Blog

Articles from the bi-monthly Cornell Field Crops newsletter

May 9, 2019
by Cornell Field Crops
Comments Off on Nitrogen Management for Forage Winter Cereals in New York

Nitrogen Management for Forage Winter Cereals in New York

Sarah E. Lyonsa, Quirine M. Ketteringsa, Shona Orta, Gregory S. Godwina, Sheryl N. Swinka, Karl J. Czymmeka,b, Debbie J. Cherneyc, Jerome H. Cherneyd, John J. Meisingere, and Tom Kilcera,f

a Nutrient Management Spear Program, Department of Animal Science, Cornell University, Ithaca, NY, b PRODAIRY, Department of Animal Science, Cornell University, Ithaca, NY, cDepartment of Animal Science, Cornell University, Ithaca, NY, dSoil and Crop Sciences Section of the School of Integrative Plant Science, Cornell University, Ithaca, NY, eUSDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, fAdvanced Agricultural Systems, LLC, Kinderhook, NY

Introduction

Forage double-cropping, or growing two forage crops in a single growing season, can be a beneficial practice for dairy farmers in New York. Double-cropping corn silage with forage winter cereals, such as triticale, cereal rye, or winter wheat, can add additional spring yield on top of numerous environmental benefits including preventing soil erosion, nutrient recycling, and increased soil organic matter over time – which all promote increased soil health. Winter cereals intended for forage harvest require nitrogen (N) management to reach optimum yield and forage quality. This study was aimed at identifying field and management characteristics that can estimate yield and N needs for winter cereals harvested for forage in the spring.

Field Research

A state-wide study with 62 on-farm trials investigated the spring N needs of forage winter cereals across New York from 2013 to 2016. Each trial had five rates of N (0, 30, 60, 90, and 120 lbs N/acre) applied to farmer-managed forage triticale, cereal rye, or winter wheat at green-up in the spring to determine the most economic rate of N (MERN). All forages were harvested at the flag-leaf stage in May each year. Soil samples were taken at green-up before fertilizer was applied. Farmers supplied information about management practices and field characteristics, such as past manure applications, planting date, and soil drainage. This information, in addition to soil fertility analysis results, was used to develop a decision tree model for predicting MERN classification.

Results

About one-third of the trials did not require additional N (MERN = 0), while the remainder responded to N and most required between 60 and 90 lbs N/acre (Figure 1). Yields at the MERN across trials ranged from 0.4 to 3.0 tons DM/acre (1.8 tons DM/acre average). Yield could not be accurately predicted based on information gathered, but the lower-yielding sites (< 1.0 tons of DM/acre) tended to be poorly or somewhat poorly drained and not have a recent manure history.

Farmer-reported soil drainage, manure history, and planting date were the most important predictors of the MERN (Figure 2). Most of the winter cereals grown on fields that were described as well-drained by the farmers did not require additional N at green-up. For the fields reported as somewhat poorly- or poorly-drained, 60 to 90 lbs N/acre were required if the field had not received manure the previous fall. If manure had been applied recently, 60 to 90 lbs N/acre were required for stands that were planted after October 1 versus 0 lbs N/acre if planting had taken place before October 1.

Forage winter cereal most economic rates of N (MERN) and yield at the MERN

Figure 1. Forage winter cereal most economic rates of N (MERN) and yield at the MERN for 62 N-rate trials in New York from 2013 to 2016. Fertilizer N was applied at spring green-up and forage was harvested at the flag-leaf stag in May.

Decision tree for forage winter cereal most economic rate of N (MERN) at spring green-up

Figure 2. Decision tree for forage winter cereal most economic rate of N (MERN) at spring green-up. If the indicated site or history factor in the blue box is true, move to the left branch in the tree; if false, move to the right branch. The predicted MERN is listed in the red boxes. Recent manure history refers to manure applied within the last year (either spring or fall). This decision tree correctly predicted MERN classifications for 78% of the trials included.

Forage winter cereal crude protein as impacted by N rate applied at spring green-up

Figure 3. Forage winter cereal crude protein as impacted by N rate applied at spring green-up for 62 trials in New York from 2013 to 2016. Forage was harvested at the flag-leaf stage in May.

Most forage quality parameters were not impacted by N rate. Neutral detergent fiber (NDF) at the MERN ranged from 42 to 60% of DM (52% average), in vitro true digestibility (IVTD) at the MERN ranged from 81 to 94% of DM (88% average), and NDFD digestibility (48-hour fermentation) at the MERN ranged from 67 to 84% of NDF (78% average). However, crude protein (CP) increased with N rate for most trials, even those with MERNs of 0. Crude protein averaged 13% of DM for the 0 lbs N/acre treatment and 20% of DM for the 120 lbs N/acre treatment (Figure 3). On average, CP increases by 1% for every 15-20 lbs of N applied. These findings suggest that additional N beyond the MERN can increase the CP levels of the forage while not impacting other forage quality parameters.

Conclusions and Implications

Results from this study emphasize the importance of growing conditions for optimum forage winter cereal performance. In fields that have poor drainage and lack recent manure histories, forage winter-cereals may not yield well and will likely require additional N inputs, while fields with well-drained soil conditions and better soil fertility will support higher yields and better forage quality without needing additional N in the spring. Planting date is also a critical management consideration. Planting late in the fall (after October 1 in this study), may result in lower yields (see also Lyons et al., 2018a). Timely planting (before October 1) in fields with good soil fertility and/or recent manure histories more often resulted in MERNs for N at green-up of 0 lbs N/acre, which would save farmers time and costs in the spring. Nitrogen management at green-up did not greatly affect forage quality except for CP, which increased with N addition even if the additional N did not increase spring yield.

Additional Resources

  • Lyons, S.E., Q.M. Ketterings, G.S. Godwin, J.H. Cherney, K.J. Czymmek, and T. Kilcer. 2018a. Spring N management is important for triticale forage performance regardless of fall management. What’s Cropping Up? 28(2): 34-35.
  • Lyons, S.E., Q.M. Ketterings, G.S. Godwin, K.J. Czymmek, S.N. Swink, and T. Kilcer. 2018b. Soil nitrate at harvest of forage winter cereals is related to yield and nitrogen application at green-up. What’s Cropping Up? 28(2): 32-33.

Acknowledgements

Cornell, Nutrient Management Spear Program, and Pro-Dairy logosThis work was supported by Federal Formula Funds, and grants from the Northern New York Agricultural Development Program (NNYADP), the USDA-NRCS, and Northeast Sustainable Agriculture Research and Education (NESARE). We would also like to thank participatory farmers and farm advisors for assisting with the trials, including Cornell Cooperative Extension educators, consultants, NRCS staff, and SWCD staff. For questions about these results, contact Quirine M. Ketterings at 607-255-3061 or qmk2@cornell.edu, and/or visit the Cornell Nutrient Management Spear Program website at: http://nmsp.cals.cornell.edu/.

May 3, 2019
by Cornell Field Crops
Comments Off on Best Timing of Harvest for Brown Midrib Forage Sorghum Yield, Nutritive Value, and Ration Performance

Best Timing of Harvest for Brown Midrib Forage Sorghum Yield, Nutritive Value, and Ration Performance

Sarah E. Lyonsa, Quirine M. Ketteringsa, Greg Godwina, Debbie J. Cherneyb, Jerome H. Cherneyc, Michael E. Van Amburghb, John J. Meisingerd, and Tom F. Kilcere

 a Nutrient Management Spear Program, Department of Animal Science, Cornell University, Ithaca, NY, b Department of Animal Science, Cornell University, Ithaca, NY, c Soil and Crop Sciences Section of the School of Integrative Plant Science, Cornell University, Ithaca, NY, d USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, and e Advanced Agricultural Systems, LLC, Kinderhook, NY

Introduction

Forage sorghum is a drought and heat tolerant warm-season grass that can be used for silage on dairy farms. Since it requires a soil temperature of at least 60°F for planting, the recommended planting time for New York is early June, unlike corn which is usually planted earlier in the spring. This would allow time for a forage winter cereal harvest in mid- to late-May prior to sorghum planting. Forage sorghum also has comparable forage quality to corn silage for most parameters except for starch, which is typically lower in forage sorghum. The main question for this research was: can forage sorghum be harvested in time for establishment of a fall cover crop or winter cereal double crop in New York? To answer this question, we conducted seven trials in central New York from 2014 through 2017 to evaluate the impact of harvesting at the boot, flower, and milk growth stages versus the traditional soft dough stage on the yield and forage quality of a brown midrib (BMR) forage sorghum variety.

Trial Set-Up

The seven trials were planted between early June and early July on two Cornell research farms in central New York. The sorghum was planted at a 1-inch seeding depth and 15-inch row spacing (15 lbs/acre seeding rate). Two N-rates as urea treated with Agrotain® (Koch Agronomic Services, LLC, Wichita, KS) were broadcast at planting (100 and 200 lbs N/acre) with the goal of having a non-N limiting scenario for these sites. Alta Seeds AF7102 (Alta Seeds, Irving, TX) was used for all trials. Forage sorghum was harvested at the boot, flower, milk, and soft dough stages. Harvest was done using a 4-inch cutting height. Measurements included dry matter (DM) yield and forage quality, including total digestible nutrients (TDN), neutral detergent fiber (NDF) analyzed on an organic matter basis with amylase, 30 hour NDF digestibility (NDFD30), non-fiber carbohydrates (NFC), acid detergent fiber (ADF), dry matter (DM), crude protein (CP), and starch content. Forage quality parameters were entered into the Cornell Net Carbohydrate and Protein System (CNCPS) version 6.55, a ration formulation software, for predicting how sorghum harvested at various growth stages would perform in a typical dairy total mixed ration (TMR) compared to corn silage. Forage sorghum, at each of the different growth stages, was substituted for 0, 25, 50, 75, and 100% of the corn silage fraction of the diet, and metabolizable energy (ME) allowable milk and metabolizable protein (MP) allowable milk were predicted.

Results

Timing of forage sorghum harvest impacted both yield and forage quality. Yield did not increase beyond the flower stage for four trials or beyond the milk stage for one trial. For two trials yield continued to increase until the soft dough stage. Averaged across all trials, yield increased from 4.8 tons DM/acre at the boot stage, to 6.0 tons DM/acre at the flower stage, and 6.8 and 7.1 tons DM/acre at the milk and soft dough stages, respectively (Figure 1). These results suggest that, in most cases, forage sorghum can be harvested at the flower or milk stage without losing a substantial amount of yield. With later harvests forage quality parameters of DM, starch, and NFC were increased while CP, NDF, and NDFD30 were decreased.

Graph of summary of yield and forage quality of BMR brachytic dwarf forage sorghum

Figure 1: Summary of yield and forage quality of BMR brachytic dwarf forage sorghum as impacted by growth stage at harvest. These are averages of seven trials in central New York from 2014-2017. Quality parameters include total digestible nutrients (TDN), neutral detergent fiber (NDF) analyzed on an organic matter basis with amylase, 30 hour NDF digestibility (NDFD30), non-fiber carbohydrates (NFC), acid detergent fiber (ADF), dry matter (DM), crude protein (CP), and starch.

Without adjusting for DM intake, 100% inclusion of forage sorghum harvested at the soft dough stage resulted in predicted ME allowable milk (90 lbs) that was similar to the 100% corn silage TMR (92 lbs) across sorghum inclusion amounts (Fig. 2A). The lower starch content of less mature sorghum resulted in reduced ME allowable milk at greater inclusion in the diet, averaging 87, 88, and 89 lbs for 100% inclusion of sorghum at the boot, flower, and milk stages, respectively. Predicted MP allowable milk for all sorghum growth stages was similar to that of corn silage (Fig. 2B).

Graph of metabolizable energy allowable milk and metabolizable protein allowable milk of forage sorghum

Figure 2: Metabolizable energy (ME) allowable milk (A) and metabolizable protein (MP) allowable milk (B) of BMR brachytic dwarf forage sorghum predicted with the Cornell Net Carbohydrate and Protein System (CNCPS) version 6.55. Harvest took place at four growth stages, and sorghum was substituted for different percentages of corn silage in a typical dairy total mixed ration. Values are averages of seven trials in central New York from 2014 to 2017.

Conclusions and Implications

Forage sorghum can be a good alternative to corn silage in double-cropping rotations with winter cereals grown for forage in New York. The BMR forage sorghum in this study could be harvested as early as the late-flower to early-milk growth stage without losing significant amounts of yield. However, early harvesting did affect forage quality, resulting in greater NDFD30, NDF, ADF, and CP, and less NFC, starch, and DM. Forage sorghum could replace corn silage in a dairy TMR but energy supplements are needed if sorghum is harvested before the soft dough stage due to a lower starch content at the earlier harvest dates. Additional forage may also be needed in a sorghum-based TMR due to changes in fiber digestibility at different growth stages. The higher moisture content of less mature sorghum may also call for adjustments in chop length and/or silage additives, such as inoculants, for proper fermentation.

Additional Resource

Lyons, S., Q.M. Ketterings, G. Godwin, D.J. Cherney, J.H. Cherney, J.J. Meisinger, and T.F. Kilcer (2019). Nitrogen Management of Brown Midrib Forage Sorghum in New York. What’s Cropping Up? 29(1):1-3.

Acknowledgements

Cornell University logo, Nutrient Management Spear Program logo, and Pro-Dairy logoThis work was supported by Federal Formula Funds, and grants from the Northern New York Agricultural Development Program (NNYADP), New York Farm Viability Institute (NYFVI), and Northeast Sustainable Agriculture Research and Education (NESARE). For questions about these results, contact Quirine M. Ketterings at 607-255-3061 or qmk2@cornell.edu, and/or visit the Cornell Nutrient Management Spear Program website at: http://nmsp.cals.cornell.edu/.

Subscribe By Email

Please prove that you are not a robot.

Skip to toolbar