Skip to main content
  Cornell University

MAE Publications and Papers

Sibley School of Mechanical and Aerospace Engineering

New article: Uncertainty Constrained Robotic Exploration: An Integrated Exploration Planner

Article: Ivanov, A; Campbell, M; “Uncertainty Constrained Robotic Exploration: An Integrated Exploration Planner”, IEEE Transactions on Control Systems Technology, 27 (1):146-160


Abstract: Efficient robotic exploration of unknown sensor limited global-information-deficient environments poses unique challenges to path planning algorithms. In these difficult environments, no deterministic guarantees on path completion and mission success can be made in general. Integrated exploration (IE), which strives to combine localization and exploration, must be solved in order to create an autonomous robotic system capable of long-term operation in new and challenging environments. This paper formulates a probabilistic framework that allows the creation of exploration algorithms providing probabilistic guarantees of success. A novel connection is made between the Hamiltonian path problem and exploration. The guaranteed probabilistic information explorer (G-PIE) is developed for the IE problem, providing a probabilistic guarantee on path completion, and asymptotic optimality of exploration. A receding horizon probabilistic information explorer (RH-PIE) is presented, which addresses the exponential complexity present in G-PIE. Finally, RH-PIE planner is verified via autonomous hardware-in-the-loop experiments.

Funding Acknowledgement: AFOSR [FA9550-12-1-0410]

Funding Text: This work was supported by AFOSR under Grant FA9550-12-1-0410.

Skip to toolbar