Skip to main content
  Cornell University

MAE Publications and Papers

Sibley School of Mechanical and Aerospace Engineering

New article: Ectopic Expression of SOX9 in Osteoblasts Alters Bone Mechanical Properties

Article: Liang BJ, Cotter MM, Chen DX, Hernandez CJ and Zhou G (2012). “Ectopic Expression of SOX9 in Osteoblasts Alters Bone Mechanical Properties.” Calcified Tissue International 90(2): 76-89.

DOI

Abstract: Osteoporosis is a common skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. We previously demonstrated that Col1a1-SOX9 transgenic (TG) mice, in which SOX9 specifically expresses in osteoblasts driven by a 2.3-kb Col1a1 promoter, display osteopenia during the early postnatal stage. In this study, to further analyze the osteopenia phenotype and especially the effect of the osteoblast-specific expression of SOX9 on bone mechanical properties, we performed bone geometry and mechanical property analysis of long bones from Col1a1-SOX9 TG mice and wild-type littermates (WT) at different time points. Interestingly, after body weight adjustment, TG mice had similar whole-bone strength as WT mice but significantly thinner cortical bone, lower elastic modulus, and higher moment of inertia. Thus, osteoblast-specific SOX9 expression results in altered bone structure and material properties. Furthermore, the expression levels of Pcna, Col1a1, osteocalcin, and the Opg/Rankl ratio in TG mice were significantly lower until 4 months of age compared with WT mice, suggesting that TG mice have dys-regulated bone homeostasis. Finally, bone marrow stromal cells (MSCs) isolated from TG mice display enhanced adipocyte differentiation and decreased osteoblast differentiation in vitro, suggesting that osteoblast-specific expression of SOX9 can lead to altered mesenchymal stem cell differentiation potentials. In conclusion, our study implies that SOX9 activity has to be tightly regulated in the adult skeleton to ensure optimal bone quality.

Leave a Reply

Your email address will not be published. Required fields are marked *

Skip to toolbar