Conservators in Action

Michele HamillDuring a recent visit to the beautiful conservation lab of the Indiana Historical Society (IHS) for a workshop on pre-coated repair materials, we had the opportunity to tour their History Lab .  The History Lab is dedicated to advancing the public’s knowledge about conservation and preservation.Be still my conservator’s heart!  An entire exhibit space and teaching facility encouraging the exploration of how IHS collections are preserved, what visitors of all ages can do to extend the life of their family collections, and learn about the different processes involved in making photographs, books, and paper artifacts.

An engaging and fun interactive display lets visitors explore a variety of artifacts and manufacturing processes in depth.

The components of this cased photograph, a tintype (a unique photographic image on a lacquered iron base), are displayed to illustrate the complex, composite nature these artifacts.

The History Lab offers a view of the state-of-the-art IHS conservation lab where visitors can see conservation in action; hands-on activities, like stabilizing paper documents; and many displays –good vs. bad paper; a recent conservation treatment, and a touchable array of materials used to make artifacts.

The visible effect of all that touching is striking. The white sheet on the far right– with the hole –is paper!

The touch display is paired with an explanation about why conservators don’t generally wear gloves during treatment. Gloves make sense in some reading room situations and with some types of vulnerable collection materials.

A detailed explanation of this conservation project was accompanied by water samples showing the discolored, acidic, degradation products that are released during careful aqueous treatment.

An impressive display illustrating how enclosures impact collection materials.

The “Unfortunate Mr. Foster” helps to illustrate how to avoid damage in home collections.

On the left is the instruction space in the History Lab for walk-in visitors, groups, and families to learn about paper conservation stabilization techniques. On the right, is the larger teaching space where the IHS hosts students from colleges and high schools, volunteers, and members from surrounding cultural institutions. The IHS store also sells archival storage boxes and basic mending kits (with instructions) to promote care of collections to its visitors.

The tools and technology used in conservation are also evident in the History Lab—on the left is a view of the IHS conservation lab and, on the right, the digital microscope exploration station showing a detail of the red watercolor used in the flower illustration.

The History Lab is welcoming, engaging, and instructive. What a wonderful way to promote how conservation benefits collections, and as a powerful teaching tool about the material culture in our everyday lives. It was also a good prompt to share what we do here at Cornell so stay tuned for a recap on the pre-coated repair materials workshop held at IHS and how we may use those techniques on our collections, and a fascinating look at squeezes (paper cast impressions) from the Parthenon.  Conservators in action!



“Less of You; More of My Ancestors” | Part II

J.M. Iacchei

In Part I of this blog series I introduced barkcloth, gave a brief historical and cultural overview, described methods of production, and concluded with the importance of conservation and preservation efforts. Part II continues with highlights from the treatment of the 12 pieces of barkcloth from the Cornell Costume and Textile Collection.“Less of you; more of my ancestors.” These were the words of guidance shared by a colleague when I inquired about treatment for this collection. I wanted to be certain that an appropriate level of treatment was provided without compromising the historic integrity of these ethnographic items. Because many of these pieces of cloth were oversized, they would need to be rolled both for final storage, and for transport to and from the digitization studio. This would mean needing the strength to withstand numerous rollings and unrollings during the imaging process, as well as afterwards in use in instruction and research.

In addition to this stability concern were the inherent causes of deterioration rooted in the items’ history, extending from the time of manufacture and the processes involved to use, and the environmental conditions of previous and present storage.

Before discussing the causes of deterioration, it is worth noting that some parts of the manufacturing process actually inherently strengthened the quality of the cloth produced. Steps taken during the pre-beating processes, and the nature of the beating and drying processes each involve aspects that facilitate the longevity of the cloth.The practice of soaking or steeping the bark for several hours prior to beating encourages a stronger and more flexible cloth. As a result of this process, bacteria and fungi from fermentation cause the plant cell wall material to break down, allowing the pectin and hemicelluloses that normally stabilize the cell walls of the living plant to solubilize and redistribute. Because of this redistribution, the resulting cloth is more flexible. The pectin and hemicelluloses that remain in place add strength to the fibers and consequently, also to the cloth.[1]

During beating, the grooves on the face of the beater spread the fibers and alter their parallel orientation to one that is angled and interlocking as well as allow excess water and air to escape. This interlocking, rather than parallel orientation, is stronger and less prone to lateral tears that most often occur parallel to the grain of the cloth’s fiber.[2] In the drying process, the barkcloth is stretched out in the sun. The high UV content of the tropical sun stunts the growth of micro-organisms.[3]

It is the following stages of decoration, use, and storage conditions that most contribute to deterioration. Just as environmental factors affect paper materials, mechanical stresses, light exposure, fluctuations in relative humidity, biological agents, and pollutants each contribute to further deterioration of barkcloth; the effects of which can be seen in color changes, staining, insect damage, mold growth and weakening of fibers.

The traditional methods of island storage were not preservation-minded. Typically, large pieces of barkcloth were stored in rolls among the rafters of the home, often in areas affected by cooking smoke. While the cooking fire kept the cloth dry and free of mold and the aldehydes in the wood smoke acted as a preservative against bio-deterioration, the exposure to smoke allowed for the collection of soot, an environmental pollutant which will overtime lead to deterioration.[4]

The dyes, pigments, resins, gums, paints, and oils used to decorate and finish barkcloth over time can deteriorate – becoming faded, brittle, and flaking.  Consequently, the cloth below the colored area will also become brittle and stiff, causing breaking, tearing along folds, or separating along the grain, leaving holes.[5]

In this collection, the main concerns were the stubborn folds incurred from previous storage, and the embrittlement of  the dyes used to apply designs to the cloth.

Eleven of the twelve items were stored together over long periods of time in a box resulting in stubborn horizontal and vertical folds. The stubborn folds were a concern both for quality of image capture and for compression overtime which leads to tears.

Overtime, dyes begin to become brittle and flake, and/or cause the fibers below to become brittle resulting in loss.

Numerous small lateral splits in the barkcloth, areas of loss, and areas of potential loss presenting instability needed to be addressed before these items could be safely transported on a roll to the digitization studio. Before these concerns could be remedied, surface soil that would contribute to further deterioration or that would otherwise embed into the fiber of the cloth when moisture was introduced during humidification first needed to be removed, and the folds reduced.

Each piece of barkcloth was vacuumed through a screen with a Nilfisk HEPA vacuum, lightly humidified to relax the fibers of the cloth, and dried under weight. Very light weight was used so as to not affect the inherent textured quality of the cloth- just enough to reduce the stubborn folds.

(Left) Holes that occurred at the time of manufacture during beating were patched with small pieces of barkcloth. (Center and Right) Similarly, later repairs were made with recycled pieces of barkcloth. In these instances, the previous repair was left. The black tape shown in the rightmost image above however, was removed.

Areas of instability, like the ones shown below, were addressed by mending with a stable Japanese tissue of an appropriate tone and weight (to blend with the natural color and thickness of the cloth). Wheat starch paste was chosen as an adhesive. In previous testing, it proved to be the most compatible with the texture and finish of the cloth. Other adhesives, methyl cellulose for example, seemed to leave a shiny finish.

(Left column) Before treatment – recto and verso                                                             (Right column) After treatment –  recto and verso

Significant tears and loss required a different approach. The barkcloth shown below had a central vertical tear extending nearly the entire length (just under 8 feet). The dyes were brittle and flaking; the cloth on either side of the tear was also brittle, shredded, and mangled. Temporary reversible bridge mends were applied on the front to ensure that the design was aligned correctly. The cloth was then rolled, unrolled to have the underside face up, and mended on the verso (back).

(Left) Vertical tear extending nearly the full length of the cloth; (Center:top) Aligning areas along the tear prior to mending on the verso; (Center bottom and right) Temporary reversible bridge mends to hold cloth in position

(Left) After treatment recto; (Right) after treatment verso

Once treated, each item could be safely transported for digitization. Each side of each item required multiple shots (12-15 shots per side) that would then be stitched together using the camera software.

Simon Ingall, Digital Imaging Assistant, expertly facilitates the maneuvering and successful image capture of the oversized pieces of barkcloth.

Ideally, if space allows, barkcloth should be stored flat. Among this collection, those that fit in folders were stored flat in archival paper folders in flat file map cases. The remaining oversized pieces were rolled on archival tubes covered with ethofoam (for cushioning) and a Mylar cover (a barrier between the barkcloth and the ethofoam). The barkcloth was rolled face up with Hollytex interleaving (spun polyester web), labeled with thumbnail image and catalogue information, and returned to The College Human Ecology, Department of Fiber Science and Apparel Design for use in instruction and research.

While this treatment included practices commonly used in paper conservation treatments –  utilizing the same materials and stabilization techniques, working with laminate structures, and navigating over-sized items there are inherently unique qualities about barkcloth that required research, collaboration, and skills from allied conservation specialties. We are very grateful to our international colleagues at The Smithsonian Institution, Te Papa Museum, NZ, Bishop Museum, HI, and University of Glasgow for sharing their knowledge and expertise that only comes from the experience of working directly with these materials.

Below is a short video highlighting the treatment process of these items:



[1] Rowena Hill, “Traditional Barkcloth from Papua New Guinea: materials, production and conservation,” in Barkcloth: Aspects of preparation, use, deterioration, conservation and display, ed. Margot M. Wright (London: Archetype Publications Ltd, 2001), 33.

Due to the partial fermentation that occurs “activity from invading bacteria and fungi acquired during wetting and soaking, leads to a partial breakdown of the cell wall material helping to liberate pectin and hemicelluloses which normally cement the cells together ‘in vivo.” Thus dispersed, some of these binding chemicals get washed away, reducing the overall stiffness of the cloth. Those which remain ‘in situ’ help to thicken the fibers and bond them together in their newly aligned positions thereby strengthening the cloth.”

[2] Hill, “Traditional Barkcloth from Papua New Guinea: materials, production and conservation,” 34.

[3] Hill, “Traditional Barkcloth from Papua New Guinea: materials, production and conservation,” 35.

[4] Hill, “Traditional Barkcloth from Papua New Guinea: materials, production and conservation,” 35.

[5] Hill, “Traditional Barkcloth from Papua New Guinea: materials, production and conservation,” 41.

“Less of You; More of My Ancestors” | Part I

J. M. Iacchei

Our work in Conservation requires collaborative efforts with our colleagues throughout the library. Digitization projects are becoming increasingly more common. Together with Digital Consulting & Production Services (DCAPS) and the College of Human Ecology, Department of Fiber Science and Apparel Design, we recently treated 12 pieces of Polynesian barkcloth, also called tapa, from the Cornell Costume and Textile Collection.

Barkcloth, called siapo by the Samoans and Futunans, ngatu by the Tongans and Uveans, ahu by the Tahitians, masi by the Fijians and kapa by the Hawaiians, is widespread. Historically produced throughout the Pacific, Eastern Asia, and Africa, this cloth-like material is made from the inner bast fibers of select plants. The most prevalent fiber source throughout the Pacific was the Broussonetia papyrifera of the Moracaea family, more commonly known as paper mulberry. Depending on geographic region, other varieties of the Moraceae Family were also used, notably the Artocarpus (breadfruit) and the Ficus (fig and banyan). [1] Additional sources of fiber were obtained from the poison tree (Antaruis Toxicaria) and the Mamaki (Pipturus Albidus), in the far eastern tropics and in Hawaii, respectively.[2] Each fiber produced a cloth of its own color, quality, and fineness. Traveling in 1769 with Captain Cook, Joseph Banks wrote, “of this thin cloth they have as many different sorts almost as we have of linen; distinguishing it into different fineness and the different materials of which it is made.”[3]

Paper mulberry does not grow natively on the Pacific Islands but must be propagated from cuttings or suckers. [4] 7000-9000 years ago (5000-7000 BC), the inhabitants of the Asian mainland began to migrate to the Pacific Islands.[5] Among the items of necessity that they would need on their sea voyage and upon their arrival for settlement (food, fresh water, livestock, and plants), they brought with them paper mulberry. Transporting paper mulberry required great care; its survival depended upon shelter from the saltwater of the ocean and the use of fresh (drinking) water to keep it alive.[6] This was not a risk-free undertaking, suggesting the significance of both the plant and the material made from it to the people who made the effort to bring it with them across such vast distances.

Traditional uses of barkcloth range from utilitarian household purposes (curtains, room dividers, bedding, mosquito nets, bandages, candle wicks) to ceremonial (burials, deaths, births, taxes to the chiefs, and offerings to the gods). Barkcloth as clothing seems to have been a privilege of the nobility, reserving certain fashions and coloring that could be worn only by select individuals. Barkcloth carried with it a symbol of wealth, second it seems, to finely woven mats, also given in events of gift exchange, as tribute, or tax.

The fundamental steps of barkcloth production are shared among practitioners of the craft; however, the specific processes involved vary by location. Harvesting, preparation, beating, implements used, decoration techniques, and patterns each contribute to the unique qualities and characteristics that make one place of origin distinct from another.

Historically, women were responsible the manufacture of the cloth, often taking place as a communal event. The degree of the men’s participation in this activity varied by island. On the whole, they were given the responsibility of making the implements needed for their manufacture – the wooden beaters and anvils, carved designs on bamboo stamps, and wooden printing boards. It was the women of the village who were responsible for the harvesting of the bark, the beating and manufacture of the cloth, the preparation of the dyes, and the construction of the vegetal (pandanus leaves, coconut midrib, sennit) printing tablets used in their decoration.

In very general terms, the practice was to harvest the fiber, separate the outer bark from the inner bark which was then cleaned and beaten on a wooden anvil. The cleaned thin strip of bark was laid on an anvil, often hollowed for resilience and musical resonance, and beaten until it became a soft, widened, thin piece of cloth expanding in width from about 2 inches to 14-18 inches. Larger pieces of cloth were made by overlapping the edges of smaller beaten strips and adhering them together with a starch adhesive (arrowroot). Thickness was determined by the number of layers, usually 2, but more (4-5) for items like bedding. With the exception of traditional Fijian cloth, the practice was to lay the upper layer perpendicular to the lower.

Above: Wooden mallets (beaters) used to transform the strip of inner bast fibers into a soft widened piece of cloth. (Images from: Brigham, William T. Ka Hana Hapa: The Making of Barkcloth in Hawaii. Memoirs of the Bernice Pauahi Bishop Museum of Polynesian Ethnology and Natural History, Vol 3, Honolulu, HI: Bishop Museum Press, 1911.)

Various beating methods were found throughout the islands including: folding and beating in bundles, beating strips individually, and felting. The sides of the wooden mallets (beaters) used to beat out the bast fibers were grooved, often in varied width and depth, with at least one side left smooth. Initial beating was done with the coarser side of the beater, moving progressively towards the smooth. In Hawaii, this process was at times taken one step further – giving a final beating with a beater with a carved surface (far right image above) to impart texture and pattern into the finished cloth.

Above is an example of barkcloth without a printed design. Right: A detail of the image on the left showing the texture imparted by a patterned I’e kuku (beater)

Methods of decoration found among barkcloth varied by location. There was some overlap, but distinct practices, patterns, motifs, and overall look to a finished cloth by island developed. The designs and patterns are applied by a variety of methods: freehand, stencils, stained with local dyes, smoked, and/ or printed.

Left: Freehand; Center: Stenciled; Right: Freehand over printed design

Before the introduction of synthetic dyes, native plants were used to create dyes and impart color to a finished cloth. It is no longer known exactly how these dyes were made, but it is know that they were often made from the bark, fruit, and roots of local flora. For example: brown from the bark of the candlenut tree, reddish brown from the bark of the Bischofia javanica, black from the soot of burnt candlenut kernels, and yellow from the root of the Curcuma viridiflora.[7]

One method of design application, practiced in Samoa, Tonga, and Fiji, is the use of design tablets or printing mats to transfer an image onto the cloth. These mats and tablets, called upeti in Samoa, kupesi in Tonga, and kupeti in Fiji, were constructed of two layers of pandanus or coconut leaves. The top layer carried a relief pattern most commonly created from pandanus leaves, sennit, coconut midribs, bamboo, and hibiscus fiber. A rubbing technique was used to transfer the relief pattern to the beaten cloth.

In 2012, I visited the Field Museum of Natural History in Chicago while researching barkcloth as part of a final project at The University of Iowa Center for the Book. Shown above and below are some examples of Vegetal printing mats from that visit.

Recto, verso, detail: The origin of this cloth was labeled as “unknown”. The patterns seen on the verso are indicative of the use of a vegetal printing tablet. Considering that this method was used most notably in Samoa and Tonga, and the designs are similar to known cloths of each location, it is likely that one or the other is the place of origin.

Recto, verso, detail: The origin of this cloth was labeled as “unknown”. The patterns seen on the verso are indicative of the use of a carved wooden printing board. Considering that this method was used most notably in Samoa and Tonga, and the designs are similar to known cloths of Samoa, it is possible that Samoa is the place of origin.

On Samoa, the use of vegetal upeti began to decline in the 1930’s after the introduction of metal tools proved the use of carved wooden upeti a more durable alternative. About this change, Patricia Lorraine Arkinstall quotes Margaret Mead writing in 1930: “But so well defined is the province of tapa making as women’s work, that men have not exercised their imagination on the carving of these boards.” Arkinstall further adds, “Thus, the patterns on the rubbing boards have become somewhat stereotyped. The women are not happy with the situation, but since wood carving has traditionally been men’s work, they do nothing but sit by as their patterned tapas become less and less interesting.” [8]

The Importance of Conserving Barkcloth

Because production of barkcloth has ceased in the majority of the islands, the methods of production originally used by the ancestors of today’s inhabitants are not wholly known.

The effects of European influence and missionary initiatives began to heighten during the 18-19th centuries. The introduction of European cloth, synthetic dyes, and the replacement of vegetal design tablets used in Tonga, Samoa, and Fiji with wooden ones are a few examples. By 1890, production of barkcloth in Hawaii had ceased.[9]  Adrienne Kaeppler, of the Smithsonian Institution, noted that by 1984 of the Polynesian Islands, only Tonga, Samoa, and Fiji were still producing barkcloth. [10] With few exceptions, the production and high cultural regard of barkcloth has waned and current manufacture is produced in lesser quality for the tourist market.

The indigenous technologies that were once used have been altered, and over generations,  have become lost to unrecorded history and memory. Because nothing of equal quality is being produced today, conservation efforts to identify the material, environmental, and technological influences responsible for current condition are necessary in order to determine appropriate treatments. In preserving these materials, an abundance of cultural, historical, sociological, and artistic information is retained for further research and study of the Pacific Islands and Pacific Island culture.

Read more about the treatment of this collection in Part II.

[1] [1] Neich and Pendergrast, Traditional Tapa Textiles of the Pacific, 9.

[2] Leonard and Terrell, Patterns of Paradise, 13.

[3] Ann Leonard and John Terrell, Patterns of Paradise: The Styles and Significance of Bark Cloth Around the World (Chicago: Field Museum of Natural History, 1980), 22.

[4] Neich and Pendergrast, Traditional Tapa Textiles of the Pacific, 9.

[5] Rod Ewins, Bark-cloth and the Origins of Paper”(Paper presented at the First National Paper Conference, Hobart, Australia, 1987), 13.

[6] Ewins, “Bark-cloth and the Origins of Paper,” 13.; Anthony Meyer, foreword to Tapa: Bark Cloth of Oceania, written by Pascal Cusenier (Paris: Galerie Meyer, 1998), 2.

[7] Kooijman, Simon. Tapa in Polynesia. Bernice P. Bishop Museum Bulletin 234. Honolulu: Bishop Museum Press, 1972, Table E.

[8] Arkinstall, Patricia Lorriane, A studty of barkcloth from Hawaii, Samoa, Tonga, and Fiji: An exploration of the regional development of distinctive styles of barkcloth and its relationship to other cultural factors, Thesis, 1966, p119.

[9] Arkinstall, Patricia Lorriane, A studty of barkcloth from Hawaii, Samoa, Tonga, and Fiji: An exploration of the regional development of distinctive styles of barkcloth and its relationship to other cultural factors, 109.

[10] Mary J. Pritchard, Siapo: Bark Cloth Art of Samoa (American Samoa: Council on Culture, Arts and Humanities Special Publication Number 1, 1984), vi.


A leaf from a Persian Manuscript, circa 15th century

J.M. Iacchei

Image hand-drawn directly from: Hunter, Dard. Papermaking: The History and Technique of an Ancient Craft. New York: Dover Publications, Inc., 1943.

The map above shows the spread of papermaking from China west to Korea and Japan, its spread East across the Chinese empire to Samarkand, then to Europe, and finally to the Americas. What is fascinating about this map is the amount of time papermaking took to spread from East to West – over 600 years to reach Samarkand in the 8th century and over 1000 to reach Moorish Spain in the 12th century.

The basic principles of papermaking are shared among Eastern and Western methods – fiber source, fiber preparation, beating, sheet formation, drying – but the raw materials selected for fiber, the local conditions, and the methods used to carry out each of these steps varied by region resulting in finished papers of distinct characteristics and qualities.

Some of the finest and most beautiful papers were said to come from the Islamic lands. These papers, made from flax or hemp rag fibers, were highly burnished with a stone giving a very smooth surface. The calligraphy and illuminations that were composed upon these papers were as remarkably beautiful as the surface on which they were inscribed.

Shown here is a manuscript brought to the lab to be removed from its mat, treated for digitization, and then rehoused. The new housing – a double-sided window mat with hinged cover allows both sides to be viewed.

Before treatment: recto and verso

After treatment: recto and verso

Double-sided window mat: recto and verso

Additional information about Islamic Papers can be found:

Bloom, Jonathan M. Paper Before Print: The History and Impact of Paper in the Islamic World. New Haven: Yale University Press, 2001.

Soteriou, Alexandra, Gift of Conquerors: Hand Papermaking in India. Ahmedabad, India: Mapin Publishing, 1999.

Repairing a 17th c. pop-up book!!!

Caitlin Moore


“Pinax Microcosmographicus” came to us from Cornell’s Rare and Manuscript collection, in preparation for being displayed in an upcoming exhibit. The deceptively plain vellum binding with tattered ribbons hides a remarkable 17th c. “pop-up book”!

These anatomical drawings are constructed in such a way that you can lift various flaps to see different layers of the human body and other hidden images.

The first issue I chose to address was the binding structure. The book consists of four sections sewn on vellum tapes which are laced into the covers. The first page of each folio has a stub that wraps around the back of the inner folio to be sewn through. These stubs had broken and been pushed under the previous section.

I humidified each stub and coaxed it back to it’s original position. I then reinforced weakened areas with Japanese tissue and wheat starch paste to prevent the tabs from coming back through without affecting the flexibility of the structure.

Many of the flaps had become weakened and were curling or creased from time and use. The curling flaps were at risk of being crushed when the pages were turned or the book closed. This required localized humidification which was carried out using very slightly dampened pieces of blotter to relax the paper followed by dry blotter and weight to make sure the paper dried in the correct position. Blotter was also inserted behind the page to draw the moisture through the paper and a sheet of mylar protected the page beneath from any moisture that might carry through.

Once the flaps were flattened, I repaired all edge tears and some of the smaller pieces such as this foot which had to be reinforced as the small toe was beginning to detach and had to be consolidated.

Then came the ribbons… The ribbons were a mess, they were frayed and twisted and looked beyond repair.

I decided to alternate lightly humidification of the ribbons and gentle reshaping with my fingers. This took a considerable amount of time but eventually they became flatter and I was able to start sorting out the fraying fibers. I used a small awl to gently separate the fibers and put them back into position.

I contacted a local textile conservator and asked for advice on consolidating the ribbon. I had planned to back the frayed bits with a tinted tissue. The textile conservator agreed and suggested using Methyl Cellulose instead of paste to attach the tissue. I then used acrylics to tint a lightweight hanji paper to match the color of the ribbon.

I attached the tinted tissue to the ribbons with Methyl Cellulose as suggested and let it dry under weight. This was repeated on all four ribbons with great results!!

Finally I built a drop spine box to protect the book. I added velcro closures to ensure the box would keep the vellum covers in place should they start to warp. You can see the Pinax Microcosmographicus in the artist book exhibit in Kroch Library opening June 8!!!




Selfies and Snapshots: What’s in Your Closet?

Michele Hamill

Due to the rise of digital photography, photographs are being shared faster and in unprecedented volume than ever before. To learn more about your digital photographs, this Library of Congress resource is a good place to start.

Some credit the first selfie to Robert Cornelius who took a daguerreotype self-portrait in October, 1839. This image, courtesy of The Library of Congress, is believed to be the earliest extant American portrait. Learn more about the fascinating effort currently underway to document Cornelius’ photographs here.

In addition to the plethora of digital photographs, family collections include prints, snap-shots, and studio portraits that form the pictorial history of generations of family members.  Let’s take a look today at some of the types of photographs in family collections.  (And, by the way, an interior closet on the main floor of your home, is a great place to store your family photographs since it tends to maintain a stable temperature and humidity.)

A daguerreotype (1839-1865), like the Cornelius self-portrait, is a treasure in a family collection. It is one of the earliest types of photographs and was most popular from the early 1840s to 1860. Daguerreotypes are comprised of a silver-coated copper plate housed in a sealed package behind glass. The sealed package sits in a protective hinged case made of wood covered by leather, cloth, or paper. Daguerreotypes have a highly polished, mirror-like surface and are often hand-colored with pigments.  They are complex, unique objects that deserve special care.

An Ambrotype, most popular in the late 1850s, is another type of cased photograph, but they differ from daguerreotypes because the emulsion containing the silver image is coated on a sheet of glass rather than metal.  Ambrotypes were a popular means of portraiture and were an economical alternative to daguerreotypes, but were largely replaced by tintypes, which were even cheaper, faster, and easier.

Tintypes were popular from the start of the Civil War until the 20th century. They were less expensive than cased photographs, and they were made on coated iron, not tin. They were placed in paper mats or albums, or left loose, as in this example. Tintypes are most commonly found in the carte-de-visite size (approx. 2 ½” × 4″ to 4 ¼”). Because they often have no protective covering, tintypes are frequently dented, scratched, or rusted.

Albumen photographs were most popular from 1850-c. 1895. They have a silver image in an albumen emulsion coated on thin paper, like this cabinet card portrait. Albumen, the white part of an egg, was the most common emulsion for 19th-century prints. To make them studier, most albumen photographs were mounted to a secondary support or card. Cabinet refers to the format used to present the image, not the photographic process used to create the image.  Cabinet cards measure approximately 4 ½ by 6 ¼ inches and often have information about the photographer or studio which is useful for dating and identifying images. Albumen was gradually superseded by gelatin and collodion printing-out papers around 1885.

Another format of the albumen print is the carte-de-visite – which, at 4 ¼ by 2 ½ inches, is smaller than a cabinet card and about the size of calling cards or modern-day business cards. They were an enormously popular form of presentation for 19th-century portraits.

Printed-out photographs, such as this 19th-century cabinet portrait, have a warm brown-purple image rather than a neutral tone, because the silver image was formed from “printing-out” in daylight, not from chemical development. Printed-out photographs can look similar to albumen prints but have a major difference.  Printed-out photographs have a very white baryta layer between the paper support and the emulsion. Emulsions for printed out photographs can be either gelatin or collodion.  Many glossy collodion prints exhibit a subtle iridescent effect on their surface.

Cyanotypes, most popular from 1880 to the 1920s, are readily identified by their distinctive blue color, which results from using iron rather than silver as the image material. Family collections often contain cyanotypes, because their low cost and easy processing appealed to amateur photographers.

Crayon portraits, popular from the 1880s to the 1920s, were enlargements that could be life-size. They were made using a weak photographic base extensively hand-colored with pastels and charcoals, among other artist materials. Crayon enlargements were sometimes mounted to cloth and often placed in decorative frames. This 19th-century crayon enlargement shows the line of discoloration in the upper right corner where the cracked glass of an old frame let in atmospheric pollutants. It also shows overall darkening from damaging light exposure. The edges were protected from light exposure by the frame. Crayon enlargements can be brittle and are best stored in shallow boxes.

Platinum prints (1880-1930), in which platinum and not silver is the image material, have rich details, a velvety black color, and good image stability with no fading. Platinum prints were often used for studio portraits presented in a folder format. The characteristic image transfer of a ghost-print to the paper folder helps identify this print as platinum.

This 20th-century, silver gelatin, black-and-white snapshot shows one of photography’s popular themes: children.  People, pets, weddings, and vacations are common subjects. The image is made of silver suspended in a gelatin emulsion, the most common emulsion used for photographic prints in the 20th century. Remnants of the black paper corners are not harmful and can remain.  This wedding portrait was well-processed and remains in superb condition.

Most postcards were made using ink printing process, like lithography.  However some postcards are true photographs, or “real photo postcards”, with a postcard back, such as this silver gelatin postcard.  There are many resources to learn more about the history of postcards and for dating the stamp box found on real photo postcards.

Sepia-toned silver gelatin photographs, like this portrait in its complementary brown presentation folder, were created by toning 20th-century black-and-white photographs to a warm brown or “sepia” reminiscent of the 19th century. Sepia-toned photographs are very stable and show little image deterioration or fading. Because the brown folder is the original presentation for this photograph and is not causing damage, the folder and photograph can remain together.

Hand-colored silver gelatin photographs, like this example from the 1940s, were an early attempt to bring color to black-and-white photographs using artist’s materials. For this 1940’s print, dyes (which readily fade) were used to color the image.

Color photographs formed the largest segment of the snapshot market, beginning in the 1960s. Dyes used in color prints are prone to fading, exacerbated by light and heat. Early color photographs often show fading, or a shift in color, where one color predominates. Improvements in the 1990s resulted in longer-lasting color images.  These 3 color photographs show fading (left), color shift (middle), and modern color (right).

Polaroids, most popular in the 1970s and 1980s, often have a distinctive white border as in this example. They were a form of instant photography with do-it-yourself appeal because they did not require processing in a darkroom. Polaroids are one-of-a-kind images, because no negative is created in the process, so they may be unique images in a family collection. They can suffer from stability problems, including fading, cracking, and delamination.

Digital prints can be made using a variety of processes, including ink-jet (the most common printer used at home), electrophotography (office color printers), digital photo processors (used in many photo labs to print snapshots), and dye sublimation (used to make prints at photo kiosks). The stability of the digital prints depends on the process used to make them, the combination of the inks or dyes and paper used, and how they are stored and handled.

Here are some great resources for more information about family photographs:

The Graphics Atlas is a sophisticated resource that presents a unique, object-based approach for the identification and characterization of prints and photographs.

The Preservation Self-Assessment Program (PSAP) from the University of Illinois Library has a great format ID guide:

And from the Getty: The Atlas of Analytical Signatures of Photographic Processes…/publicat…/pdf_publications/atlas.html


Let’s Roll

Michele Hamill

Some paper artifacts, like oversize maps, posters, and architectural drawings and plans, are larger than available flat storage so a practical solution is to roll them.  It’s tempting to roll oversize artifacts tightly and put them inside narrow cardboard tubes to save space. But, in the case of oversize paper artifacts, it’s better to be on the outside of the tube. Wait—how is it safer to store artifacts on the outside of a tube rather than placing them inside? The first problem starts because tightly rolled paper artifacts placed inside a tube spring open and expand to fit the interior diameter of the tube. (If you’ve ever tried to pull a poster out of a mailing tube, you know it’s hard to reach in the tube and remove it without tugging or having it telescope, with one end of the poster still stuck firmly in the tube).  To add to the first problem, when stored under fluctuating environmental conditions, multiple artifacts inside a tube can become impacted—pressed so firmly together and restricted by the tube–they won’t budge. Then add in age and brittleness and artifacts inside tubes become stuck.

The cardboard tubes holding these architectural drawings had to be cut away to free the drawings safely.

Rolled artifacts are safest stored horizontally. If stored vertically, the contents slip down and the edges become damaged by weight and compression.

Rolling on the outside of the tube provides firm support for the artifact, distributing its weight, and avoids the artifact from getting compacted and stuck in the tube. Rolled storage can be a good choice for large paper artifacts in good condition with enough flexibility to withstand rolling and unrolling.  The recommended method of rolling oversize artifacts is to roll onto a tube with a large diameter–the larger the diameter, the gentler it is on the artifact. Multiple artifacts of similar size, condition, and related content may be rolled together, especially if they aren’t used frequently. Acid-free, buffered tubes are the best but wider diameters and longer lengths increase in price.  A non-archival tube can be used if a barrier layer of polyester film covers the tube and is securely held in place (double-sided tape works—just be sure it is fully underneath the barrier layer).

This fragile barkcloth was rolled onto a wide diameter tube. The artifact, face up, was laid on polyester webbing (polyester film and archival paper are other good choices), with enough extra material at the start to roll onto the tube first. In this way, the support layer can also act as interleaving and provide support, protection, and cushioning. Rolling oversize artifacts can be a 2-person job.

Preservation supply companies offer archival tubes in different lengths and diameters. The tube should be longer than the artifact on both sides to protect the edges of the artifact from being crushed. Long tubes can be cut with a saw to desired lengths.

After rolling, the tube is covered with an outer layer of sturdy archival paper and/or polyester film for light and dust protection.  The newly rolled artifact should be stored horizontally in a single layer on a supportive surface (the top of map cases can work if not too high).  It may be desirable to lift the ends of the tube up, using foam supports or cradles, so a fragile artifact is not bearing any weight.

The outer protective layer can be secured with Velcro (the self-fastener type is handy), or wide cloth ties, and labeled with an image and description of the contents for easier identification and retrieval.

Flat storage is preferred, but sometimes the large size of collection materials necessitates rolled storage. In the recently renovated stacks space of the Rubenstein Library at Duke University, they have incorporated both solutions–oversize flat drawer storage as well as a custom cabinet to store rolled collection materials and tube boxes. Image courtesy of Duke University Libraries.

Tube boxes are another alternative and can be stacked in small groups for efficient storage. The contents can be rolled on tubes that fit inside the boxes. Tube boxes also provide good protection for collection materials, like rolls of modern posters, that are safe to store temporarily rolled without tube support.

Some institutions have created an efficient, supportive honeycomb system of rolled artifacts on tubes placed inside wider diameter tubes. Image courtesy of Syracuse University Photo and Imaging Center.

This video from the Smithsonian Libraries Archives shows a treated panorama photograph being carefully rolled onto an archival tube. Only panorama photographs in good condition, with intact emulsions, and good flexibility can be rolled.

Libraries and archives have an abundance of rolled collection materials.  After stabilization, they are stored flat when possible. If not, now you know how we roll.


The Bruce Ferrini Paleography Collection


In an earlier post, I shared some highlights from the Seminar in Papyrus Conservation at The University of Michigan I attended last summer. I mentioned that the greater majority of papyri at Cornell University were given to The University of Michigan in 1972, but that President Andrew Dickson White’s first papyrus purchase as well as fragments of papyrus contained within the Bruce Ferrini Paleography collection remained here in Ithaca among Cornell University Library’s collections. This later collection includes examples of various historical writing systems – hieroglyphics, Demotic, Greek, and Coptic scripts on fragments of papyrus dating from 1500BC – the 6th century A.D. Due to lack of protective enclosures and condition, this collection has been under-utilized and under-studied.

Applying what I learned at the seminar, I was able to reduce loose surface dirt, open up fragile folds, re-align fibers, bridge areas that had become separated, and rehouse the papyri fragments contained within this paleography collection.

Left: before treatment;  Right: after treatment, including loose fragments previously adhered to verso

These items were removed from their old plastic sleeves (which release plasticizers and hold static, problematic for friable media), treated, and rehoused between glass to improve storage conditions and increase accessibility for study and instruction. Glass, the recommended storage material, allows for greater clarity of the inscription on the fragment as well as the visibility of the laminate structure of the papyrus itself, recto and verso. The disadvantage of glass is that it can break, but most often, especially with smaller examples, it is the glass that takes the impact of the damage rather than the papyrus.

Left: The edges of the glass are aligned (1/8 inch annealed soda-lime glass, with edges sanded, free of bubbles and scratches). Right: One edge of the glass is sealed with Filmoplast SH linen tape.

Left: The fragment is placed on the lower glass surface and held in position with a small weight; Center: The fragment is anchored to the glass using tiny (hard to see, but they are there) strips of glassine coated with dextrin. The glassine strips require very little moisture and pressure to adhere the fragment to the glass. Right: The remaining three edges of the glass are sealed with Filmoplast SH linen tape.

A custom fit tray, labeled for identification, was constructed to hold each glazed piece.

I am grateful to the University of Michigan for sharing their expertise that developed the skills that have allowed these materials to be cared for and safely stored.


Two weeks in Ann Arbor, MI

J.M. Iacchei

The seminar in Papyrus Conservation, June 13-24, 2016 at University of Michigan was one of the highlights of the summer, and of my professional career to date. It was a privilege to be invited, and an invaluable opportunity to attend. Thank you Cornell University Library and Digitization and Conservation Services for making this possible.

For two weeks, 8 of us – an international group of conservators and papyrologists gathered in Ann Arbor to work directly with the University of Michigan’s Papyri collections under the direction of Marieka Kaye, Book Conservator/Conservation Librarian.

Holding one of the largest papyri collections in the western world, the University of Michigan was the ideal institution to host this seminar. Not to mention the University’s history of concern and awareness for the care of papyri collections. The University’s contributions to conservation research began in the 1980s with Professor Ludwig Koener and continued with Julia Miller’s contributions to research and conservation protocol, Leyla Lau-Lamb’s development of the APIS Project, and now with the work of Marieka.

Their collections hold 18,000 items dating from 1000 BCE-1000 CE. About 2/3 of the collections were acquired through purchases made beginning in the 1920’s when the antiquities market was still active and legal. At that time the greater majority of papyri were first treated overseas before being dispersed among international institutions. This resulted in the separation of fragments, loss of archeological context, and questionable treatment methods having repercussions later on – i.e. deterioration and damage to backing materials.


MapKaranisThe remaining 1/3 come from archeological excavations conducted in 1925-1935 by the University of Michigan in the area of Middle Egypt called the Fayum. The site at Karanis proved to be the most fruitful. The findings from this excavation represent the 2nd-4th century Roman Egypt and are important for their insights into everyday life rather than the lives of the elite. The fragments we were working with were from this site, often literally swept into whatever boxes or containers were available on site – like the one shown here:


Though not yet fully published, the collection continues to be digitized for the APIS project (The Advanced Papyrological Information System). APIS was started by Leyla Lau-Lamb in 1993 and continued until 2013. It was initially part of a larger international project with other institutions with the goal of reuniting fragments that had become separated during the time of the Antiquities Market. The current APIS site reflects only the University of Michigan’s contributions. A separate link will take you to the previous contributions from other institutions.

Among their collections are also papyri that were once here at Cornell University. They were given to the University of Michigan in 1972’s to receive appropriate care and storage.

The Seminar was divided into lectures, work-time, student presentations, guest lecturers, workshops, and field trips.


Lectures, work-time, and student presentations: This was time focused on common conditions found among papyri collections, factors contributing to current conditions; treatment methods and materials; current research, technology and analytical practices.

In addition, each of us were asked to give a short presentation about our institution’s collections – the size, needs, and expectations ranged widely from small collections like ours to those housed at the Egyptian Museum in Cairo, and from treatment and condition concerns to setting up a papyrus lab.

JMillerJulia Miller, scholar/historian of bookbinding, discussed her work with the University of Michigan collections of papyri in bound structures. We spent a morning looking at historical models and numerous examples of cartonnage. Conservators will not separate the layers; there is promising technology (x-ray phase contrast imaging) that will enable the layers to be virtually separated in the future without damage to the original format.

Terry Wilfong, Curator of Greco-Roman Egypt, Kelsey Museum of Archeology and Professor of Egyptology) gave an overview of his work and Egyptian script systems, how scripts are used in dating pieces and how they are transcribed.

KelseyA field trip to the Kelsey Museum of Archeology provided archeological context for the Karanis fragments with which we were working, as well as a glimpse into daily practices. Shown here are dice, a lock and key system, and magic bones. Because the Sahara sands have preserved materials so well, archeologists have been given a portrait of everyday life in Karanis. A current goal of the museum is to look at the whole picture in archeological context rather than isolated items (pottery, basketry, etc.) as in previous studies.

PapyrusAt Out of Hand Papermaking Studio we made both papyrus and papyrus paper. You can see the two are quite distinct – papyrus being made from overlapping perpendicular layers of the inner pith of papyrus stalk and then pressing under weight; papyrus paper being made from cooking and beating the fiber obtained from the papyrus stalk, and then forming a sheet on a mold allowing the fibers to collect on a screen and form a sheet (of paper).

remoistenable tissueMaking re-moistenable repair tissue: Many of the papyri fragments contained extremely fragile areas that required stabilization with VERY tiny and discrete pieces of repair tissue. We use “pre-coated”/re-moistenable repair tissue because it offered the advantage of using less moisture and offered quick drying time. Aisha Wahab, Paper Conservator, presented a workshop giving us the opportunity to make our own re-moistenable repair tissue.

REX052_088c_nextday, 8/31/15, 4:15 PM, 8C, 2714x5383 (1772+0), 100%, Repro 2.2 v2, 1/15 s, R56.0, G33.0, B51.5

What this means for our collections here at Cornell University: A year ago, Michele Hamill, Paper and Photograph Conservator, and I worked on stabilizing the funerary text of Usir-Wer in preparation for the Gods and Scholars exhibit. My interest in applying to the seminar was largely directed by this item and what treatment options, if any, were available, but also to address the concerns for the papyri fragments contained within the Bruce Ferrini Paleography collection that presented condition concerns -specifically housing in plastic sleeves (which release plasticizers and hold static which is problematic for friable media), accessibility (under-utilized and under-studied), realignment of fibers, and stabilization. We are currently searching for new housing materials for Cornell University Library’s fragments.

In summary, I left the seminar with increased comfort working with these extremely fragile collections, greater confidence in recognizing when the potential for significant loss out weighs any treatment that can be performed, recognition that with patience and time technological advances may provide new opportunities to benefit these materials, and this: The importance of digitizing items currently held in collections and making them available to researches, and the importance of institutional collaboration to reunite (virtually if not physically) separated fragments.

For more information on about the treatment of papyrus collection please visit the Advanced Papyrological Information System Guidelines for Conservation of Papyrus.


The Funerary Text of Usir-Wer

J.M. Iacchei

REX052_088c_nextday, 8/31/15, 4:15 PM, 8C, 2714x5383 (1772+0), 100%, Repro 2.2 v2, 1/15 s, R56.0, G33.0, B51.5

Three years ago in the Fall of 2013, one of my first assignments here at Cornell was to spend some time in the Division of Rare and Manuscript Collections’ (RMC) reading room with a very old and sizeable papyrus. I was asked prepare a condition report identifying the conditions and factors contributing to its current and future state. The item was a 2300 year old funerary text dating back to the Ptolemaic Period, 330-220 BC, belonging to an Egyptian Stolist priest who went by the name Usir-Wer.  The papyrus measures about 8 feet in width and 1 foot in height.

Fredrika (Freddy) Loew, a former graduate student in Archaeology and current Senior Manuscript Processor in the Division of Rare and Manuscripts Collections, began working on the papyrus translation in 2013. She brought it to the attention of Michele Hamill (Paper and Photograph conservator). It was at this time that I conducted the initial condition assessment, but it wasn’t until the summer of 2015 that we revisited the papyrus in preparation for digitization and the Gods and Scholars exhibit.

In the lengthy text that follows, I will tell you about Usir-Wer, the history of his funerary text, and the conservation treatment in preparation for digitization and exhibition. I will take you through this somewhat chronologically, starting from the very beginning….

320-330 B.C Usir-Wer was a Stolist priest during Ptolemaic Egypt. This was a high ranking position in Egyptian society and carried with it the responsibility of tending to the care of the temples and statuary where it was believed that the spirit of the deceased, the ka, found a permanent resting place. By tending to the needs of the deceased and performing rituals, order was maintained and the gods were appeased. It was believed that failure in these responsibilities would lead to disorder and anger of the gods.

Religious ritual traditions practiced by the Ancient Egyptians have a deep history extending back well before they were documented in written form – objects found at burial sites, extant papyri, inscriptions and imagery found on tomb walls each provide insights. Among archeological findings is a body of texts known collectively as funerary texts. Under scholarly study, separate groupings have been distinguished-the Book of the Dead being only one of them, though perhaps the most secularly familiar.  The others include: Pyramid Texts, Coffin Texts, Books of Breathing, and Books of the Netherworld. These texts contain ‘mortuary liturgies’ and ‘funerary literature’ or similarly ‘collective ritual’ and ‘personal recitations’ to be used on behalf of the deceased or by the deceased in preparation for or during his journey through the afterlife.

The origins of these spells, recitations, litanies, and hymns are unknown. Separate and distinct, the texts span across time periods, and present differences in content and emphasis but all share a common theme: the preparation of the deceased in the afterlife by offering assistance in the form of protection and provisions – and this is what we find in Usir Wer’s funerary text.

This vignette from the papyrus shows Usir-Wer in the Hall of Judgment. Above are the 42 gods to whom he must address in his negative confession–all the sins he has NOT committed. Usir-Wer is on the right facing Anubis as his heart is weighed against the Feather of Truth. Thoth is on the left ready to record the verdict of the balance. Ammit is ready to devour the heart should Thoth not proclaim it righteous.

So how did Usir-Wer’s funerary text find its way to Ithaca? 330BC-1990’s

From the time of Usir-Wer’s burial, circa 330-320 BC, until its excavation in 1887, the papyrus remained rolled and held within his tomb; where exactly in Egypt we are not certain. It was purchased two years later in 1889 by Cornell University President A.D. White while traveling in Cairo. At the time of its purchase, the papyrus was no longer rolled but had been opened flat, mounted, and framed– which White noted, along with some other significant details, in his letters to his colleagues back in Ithaca – more about that in a moment.

About the content, he tells us that it was found in the tomb of a priest of the Ptolemaic period, is written in hieroglyphs, but mainly hieratic, and the text was “an extract from the Book of the Dead”. Over time this became “telephoned” into “It is the Book of the Dead,” likely due to its prominent vignette of the Judgment Scene, Spell 30B from the Book of the Dead. This mis-interpretation was not clarified until 2013 when Freddy began to translate the text and verified her findings with the letters. The parts of the text that are not from the Book of the Dead, are more like rituals and prayers to be said on behalf of or by the deceased to ease his passage into the underworld.

Upon arrival in Ithaca, the papyrus was hung in the Seminary room of McGraw Hall and then moved to Uris Library sometime in the 1890’s, displayed from time to time, and at one point, re-framed. Beyond this there is no record of the papyrus or how it was stored; nor was it ever given a call number. At the time of the construction of Kroch Library in the 1990’s it was moved to the vault for storage.

Before we can talk about the condition assessment or the conservation treatment, it is worth taking a brief moment to talk about Papyrus, how it was made and how this process informs our understanding of the current condition.

papyrus_blogThe papyrus is cut at its base; the outer stem is removed; the inner pith is cut into strips, and the soaked in water until pliable and translucent; the strips are placed in two layers perpendicular to each other, and then pressed. Rolls were made by overlapping the left edge one piece over the right of the next with the horizontal fibers on the inside. This construction facilitated the ease of writing on the inside of the roll from right to left. The papyrus would have then be rolled; this is how we would have expected to find Usir-Wer’s funerary text at the time of excavation.

In 2013, Freddy began her research and I conducted an initial condition assessment. We hadn’t yet learned of the letters from A.D. White mentioned above and so only knew what could be seen through the glass. Un-framing the papyrus at the time of its condition assessment was not an option because it was uncertain how the papyrus would react. Once unframed, we needed to be prepared to react appropriately. Below is a sketch of the papyrus I made to accompany the condition report:

condition_blogI could see that it was constructed of 9 sheets of papyrus adhered, crookedly, overall, to a secondary support of an unidentifiable material, –possibly be a fiber based board, all contained within a wooden oak frame, with a glass cover, and Masonite backing board.

condition2_blogThe view of the papyrus was obscured by a haze on the glass located about the areas of inscription. The secondary support: appeared to be composed of two pieces; the right is raised slightly more than the left. The papyrus itself showed areas of discoloration, delamination, loss, edge fray, cracking; faded media overall with areas of loss due friability and flaking of the pigment.

From this initial assessment we knew that we would need to address 1) The haze on the inner surface of the glass, 2) The secondary support and its lack of support, 3) Potential areas of loss on the papyrus, and 4) The backing materials.

2015 | Preparation for Digitization and Exhibit

We were expecting the glass to be loose, as you would find in a typical picture frame but it was not! Instead we found the glass held in place by a thinner inner frame nailed within the larger frame. This structure holds the glass in place and also keeps the papyrus from contacting the glass, but because of this the glass could not be removed.

The haze on the inner surface of the glass was located above the areas containing the inscription. It was most likely caused by the migration of salts from the papyrus, pigments and/or mounting materials.

You can see the dramatic difference that cleaning made!

glass_blogNow unframed, we were able to see how the papyrus was actually mounted. It was, as we thought, adhered crookedly overall to a secondary support, but that support was not a board. Instead, we found that the papyrus had been adhered to a now brittle paper support, which was then further adhered to a canvas support. This whole unit was then drummed around a wooden stretcher. The drumming is no longer taut and has a significant undulation at the left end which has transferred to the papyrus. This is a concern because it could potentially cause further cracking and fracture to the papyrus. Additionally, because it is drummed, the inner wooden stretcher is not in full contact with the papyrus (or the supports), only along the perimeter and along the center bar; it is not acting fully as a support to the papyrus.

Returning to A.D. Whites Letters regarding the mounting system, frame, and shipping … He tells us it was “mounted to canvas on a wooden frame and securely packed under the direction of Bey (an eminent Egyptologist of the time). The glass I have taken out fearing that it might get broken and damage the papyrus, must be glazed again at Ithaca.”

As we have seen, the glass in the current frame is secured into the frame. Along with his letters, this tells us that it was not the original glass, and we know from Freddy’s research that the papyrus was re-framed sometime in the 1890’s. This was further confirmed by the nail markings we found in the inner frame around which the papyrus is drummed, as they do not line up with markings in the current frame. This means that the only part that is original is the inner wooden stretcher.


Notice that the nail marking in the inner stretcher to which the papyrus is mounted have no corresponding marking in the outer frame


After these discoveries, one of the first treatment steps was reducing surface soil – dust, dirt, etc. from the item being treated. We used a HEPA-vacuum to remove the buildup of dust and dirt on the surface of the frame. Before we could work on the papyrus, we needed to address the lack of the support prior to stabilizing the front of the papyrus because the stabilization we would be doing to the front would involve drying mended areas under weight. A double layer of support system was fit into the inner stretcher to support the papyrus – the first 4-ply museum board, the second corrugated blue board. We hoped that this would provide enough support to the papyrus to reduce the stress caused by the undulation in the drummed support system.

stabilizationFor the purpose of digitization and the exhibit, we needed to address the areas of instability which would involve using some sort of adhesive to tack down papyrus edges that were frayed and pieces that were beginning to lift of flake. We found wheat starch paste would be best as it is reversible and would not discolor or further embrittle the papyrus.

treatment_blogThe frame, likely because it is not the original, is a little big for the inner wooden stretcher around which the papyrus and secondary supports are drummed. When we unframed it, there were two small wooded shims at each end, but even then the inner frame was a little loose. To make it more secure in the frame we added new shims around the perimeter of the frame, then a backing board of blue corrugated board, and a 20 pt card dust cover.

backing02blogFuture Considerations

The treatment so far has greatly improved the stability and appearance of the papyrus for the purposed of the exhibit and digitization. But there is still concern for the drummed mounting system. It is unlikely that removing the papyrus from the paper and canvas supports is an option. The fragility, brittleness, size, and overlapping joins of the papyrus makes removal from the secondary supports too much of a risk.  We are currently researching a better overall support than the wooden stretcher it is drummed to now.